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OCECUMETPUYHNM MNOTIK

An axially symmetric flow with a free boundary within a sufficiently long domain is investigated. This
problem is different from the ones considered earlier, that on part of the free boundary the
nonlinear Bernoulli’'s law is set in kind of inequality. The problem of the existence of boundary value
problem is equivalent to minimum problem of some functional with a variable domain of integration.
Analyticity and monotony of free boundary are proved. The approximate solution of problem, built

by Ritz method, converges to exact solutionin L, .
Keywords: differential equation, free boundary, functionality, optimization, numerical methods.

ViccnegyeTca oceCMMETPUYHBIA MOTOK CO CBOGOAHOW rpaHMuen AOCTaTOMHO AMMHHOM obnacTu.
OTta npobrnema OTnNMYaeTcsl OT paHee M3YyYeHHbIX TeM, YTO Ha CBOOOAHOW rpaHuLE HENVHEeNHoe
ycnoeue BepHynnu 3agaHo B Buae HepaBeHcTBa. [pobnema pelleHus KpaeBon 3agayn CBOgUTCH
K npobrnemMe MuvHMMyMa yHKUMOHANa C Heu3BEeCTHOW obnacTblo MHTerpupoBaHus. [okasaHa
aHaNUTUYHOCTb M MOHOTOHHOCTb CBOOOOHOW rpanHuubl. MpubnukeHHoe pelueHne, NOCTPOEHHOE
MeTofoM PuTua, cxoauTest k TouHoMy petuernio B L, .

KnroueBble cnoBa: guddepeHumantHbie ypaBHeHUS, cBoboaHas rpaHnua, doyHKLUMoHarn,
ONTUMU3ALMS, YNCTIEHHBbIE METOAbI.

JocnigXyeTbca 0CECMMETPUYHMIA MOTIK 3 BINTbHOKO MeXek JocuTb AoBroi obnacri. Lis npobnema
BiOPI3HSAETLCA Bi paHille BUBYEHUX TUM, LLO Ha BiNbHI MeXi HEMiHIMHOT ymMmoBU bepHynnu 3agaHo
y BUMAAi HepiBHoCTI. NMpobnema pilleHHs KpanoBOi 3afadi 3BOAWMTBCS A0 MpoBnemMu MiHiMymy
dyHKUioHana 3 Hesigomow obnacTio iHTerpauii. [JoBegeHa aHaniTMYHA i MOHOTOHHICTb BifIbHOI
mMexi. HabnumxeHe piweHHs, nobygoBaHe meTogoM PuTua, cxoautbCs 40 TOYHOTO PilleHHS B L2 .

Knro4oBi cnoBa: agudepeHuianbHi piBHAHHS, BinbHa MexXa, (pyHKUioHan, onTuMisauis,
yucenbHi MmeToaun.
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1. Problem. Consider an axially symmetric flow (the x-axis is the axis of symmetry) with
vorticity « = const > 0. The flow is moving from left to right. Then the problem is as follows.
Let G be the domain, where

oG=T,uUSuUIl,uUB, I, =(x=0, 0<y<c), I',=(x=a, 0<y<h),

B=(0<x<a,y=0),S:y=g(x), xe[0,a]; g(x) eC?[0,a], g(0) =c, g(a) =b,
c<b, g'(0)=0, g'(a)=0 and g(x) is the monotonic function. Let y be the sufficiently
smooth curve, such that point (0, c) is the left end of », and y lies on I'>. Curve y divides
the domain G into two subdomains. We designate the lower part of division G byG, = G.
G, is the flow region. We will study the following nonlinear problem. It is necessary to
find the stream function y(x,y)and the free boundary of (G, is simply connected
domain), where (X, y) satisfies the conditions:

Ve Wy =Y W, =ay, (xY)€G,, ()

w(x,y) is the continuous function in G, ,y(x,y) is the continuously differentiable
function in G, except, perhaps, the point (a, h) (c <h<b, (a, h) is the right end of y),
such that

w(xy)=0 (xy)eB, (2)

v, (% y) =0, (x,y)el LT, ©)
w(xy)=1 (xy)er, (4)

vy (% V) +yry (%, y) 2V7y?, v=const >0, (x,y) € 7, (5)

where on part of y, lying inside G in (5), there is always an equality. We call (v,y) the
classical solution, if (v, y) satisfies (1)-(5).

The problem (1)-(5) differs from problems [1-5], because in condition of (5) there is
an inequality when (x,y) € y nS.

2. The minimum problem. Let us consider the functional with a variable domain of
integration

dxd
Iw.) = [[lw? +y? vy’ +2wy(w—1)]7y
GY

on set R, where (v,y) € R:y is a Jordan curve such that points (0, c) and (a, b) are the
ends of y. All the points (x,y) €y, except the point (0, c), are above the horizontal

y=c¢, yeGuUS; w(XYy) is a continuous function in C_Ey, w=1lon y, w=0 on B,
w(x,y) is a continuously differentiable function in G, and J(y,y) <o, ie. J is the

bounded functional on R.

Lemma 1. Let the pair (v, y) be the classical solution of (1)-(5). Then this pair is the
stationary point of the functional J or R. Any stationary point of the functional J or R,
where y is a smooth curve, is solution of (1)-(5) (G, is the simply connected domain).
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M
Proof. Let us consider the first variation J(w,») on R [6]. We compute
= o(loy) 0(1loy
0J(v,G,,0w,027)=-2 {—[——}L—[——j—a)}ﬁl//dxdwr
' ﬂ ox\y oy ) oyly oy

+2 I la—"”5yxds+f[v2y2 —y? —Wﬂ—ds.
/4

nor, Y on

Here Sy is the variation of y, 5z =(5x, §z) is variation of (x, y); fiis the outward
normal. Here we will use the act that the first variation satisfies the condition, that & >0
for the stationary point (v, ), and (ﬁﬁ)s 0,if (x,y)eynS. Incase if (a, h) is the right
end of », where c< h< b, then we will consider a minimum problem for the functional J
on Rn. If (y,7) € R,, the points (0, c) and (a, h) are the ends of y. And if (x,y) € 7, then
c<y<h, except the ends of y: w(x,y) have the properties which were considered for
w € R (see Theorem 1).

3. Symmetrization. Let us suppose that y is an admissible curve (i.e. G, is the certain

domain). First in this section we will show the existence of linear problem (1)-(4) in
domainG,. This procedure is as follows. Consider set U, wherey eU :y/(x,y) is a

continuous function, in C_By, w(Xx,y) is a continuously differentiable functionin G,, w =0
onB, w=1o0ny and L(y) <o (L is bounded on U),

L) = [[W + v 20t -

Lemma 2. There is the unique minimum yw €U of the functional L in U. This
function w (x, y)is the classical solution of (1)-(4). If curve y has the finite length, then

I y) = j{%t//y(x.y)} o t+v2 [ yxdy-+ oof [ (v - )cxcy.

Proof. Here we use variational method and Green’s formula (see [7]). Since the
solution w(x,y) of (1)-(4) satisfies the condition w(x,y) = y’a(x,y), where a(x,y)is a
sufficiently smooth function, then

v v, (9] |0 = 2a(x.0).
Let us define symmetrization of domain G, by Steiner [3] concerning to x- and y-
axes as symmetrization Q=T1I/G,, I1= (O <x<a, O<y< b) concerning to x-axis and

horizontal y=b. We assume y =1 for all(x,y) e Q..
Lemma 3. Let w(x,y) be the solution of (1)-(4) in domain G,, and v’ (x,y) is the

solution of (1)-(4) in symmetrized domain G with the free boundary y . Then

Wy )<Iw. 7). w(xy) <0, y,(xy)>0in G" and y": x=x(t), y=y(t), 0<t<T,
where x(t), y(t) are monotonically increasing functions.
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Proof. The idea of the proof is as follows. In case of symmetrization in relation to x-
axis for every x, €[0,a] we substitute y(x,,y) for monotonically increasing function

Y(X,,Y), such that

mes{y:y/ (%, Y) < o} =mes{y: W(x,,y) < p}, pe(0.1).

Then we obtain
dxd dxd
Jloviewi vy 1= 2 s [l o) iy 1=
G" G,

The proof of this important inequality has been given in [3], [10]. At last
J I - Dlaxdy = [T ~1dxdy.
G G,

This shows that J"(¥,7") < J(w, 7). Now if we substitute ¥(x,y) for solution v~

of (1)-(4) in G", then J(w,7") <J(¥,7") (see Lemma 2) and ¥, (X, y) >0 in G*. Then it
is necessary to carry out symmetrization of G™ in relation to y-axis.
4. Theorem of existence. There is a minimal sequence (y,,7,) € R, ne N. The domain

Gn has the free boundaryy,: x=X,(t), y=y,(t), 0<t<T, where x,(t), y,(t) are
monotonically increasing functions (see Lemma 3). On the other hand, according to Lemma 2,
w.(X,Y) is the solution of (1)-(4) in Gn for everyn e N . If the coordinate system (x, y) is
turned by angle 3 /4 in positive direction, we obtain the system of coordinates (£,7) where
Vo 1 =1,(&), and [5,(&)—1,(E, ) <|& —&,| for every ne N . Thus, there exists the limit
monotonic curve y . However, y can also have a common segment with I'2 or with horizontal
y=c.
Let us suppose that

(()b3
1- = 0, (7)
then according to the maximum principle 0<y*(1—ab’/3)/b* +wy’/3< <y, (X y)<1
in G, and w,(x,y) < y’(l—ac/3)/c*+wy* I3, (x y)ell,, where IT,=(0<x<a, 0<y<c).
The function w, (X, Y) is subharmonic in Gy and ¥, (X, Y) =&, (X, y)+ @y’ /3 (where
O =Yy @y =Y EL), ,(X,Y) is the harmonic function in Gy. It follows that there is
function w(X,y) such that Vy, —>Vy in CG,),w, >w in C(G,) (here
G, =G, +0G,, ie. G, isa closed set) for every G, — G,, such that G, Ny =6. Then
we obtain that v satisfies (1)-(3) in limit domain G, , and J(y,y) <oo.
Let z, =X, +1y, be an interior point of . Now let us choose the ray I with the top in
Z, such that the angle between | and the x-axis equals 37 /4. Let us make the cut along .

8 Mpobnembl UcKyccTBEHHOrO MHTennekta 2016 Ne 1 (2)



Axially Symmetric Flow

Then we use inequality
v, (2)-1< ARe[ €™ (z - zn)]u2 L2, €7, limz, =z,

for every z <G, and sufficiently large number A>0. Let us assume that z is an interior
point G,. Letting n— oo, and then z — z,, we conclude that w =1 on y. Thus (y,y)
satisfies (1)-(4) in G, and

J(w,y)= ZIa(x, 0)dx + VZH ydxdy + a)H (v —1)dxdy,

where (X, y) = y?a(x, y) . It was shown in Lemma 2.
since (v, ¥ )| 0= 2¢t, (x,0) = ,,(x,0) = (,y )| o= 202 (%,0) = ¢, (x,0) iin C[0, ],
where (X, Y) = y?a, (X, y) and ¢(x,y) in harmonic 6,, we can prove that

d= Liinw{Z j a, (x,0)dx + v? j j ydxdy + @ j j v, —1)dxdy} =3, 7),

where d =inf J(w,y) on R. At last, using Schiffer’s method of interior variations [3], we

can show that ou/on =v almost everywhere on the part of y, lying inside G.
Lemma 4. Let us suppose that there is (7) and we also have inequalities:

3 3 a

v<%(2+%} @ mes G+2—?[1—QCT]<VJ.J1+ gzdx. (8)
c c 0

Then G, cannot coincide with G, thatis G, = G, and all the points (X, y) € y are

above the horizontal y=c, except point (0,c).
Proof. Let us suppose that G, = G. Then we have

10
lya—lr/]/ds = Zla(x,O)dx + a)jej dxdy.

Now, using w(x,y) = y2a(x,y) <y’ A-ac® I3)/ c? +wy* 13, a(x,y) <(-ac®/3)/c* +wy /3
for (x,y) e I1,, we obtain inequality

a 3
vj 1+gzdx£a)mesG+§ -2
. " c’ 3

There is a contradiction, so G, < G.

Let y,=(0<x<ay=c) and yNy,={0<x<ay=cj(hereG, =G, ). Then
wo(xy) =y?@-wc®/3)/c? +wy® /3 is the solution of (1)-(4) in G,,;=(0<x<a,0<y<c).
According to the maximum principle v =y, in C?yo. Thus, J(yv,,7,)=J(w,y) =d. Now
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we compute the first variation J on pair (v,,7,), provided that & =0 in points (0,c) and
(a,0), (gi,ﬁ) > Qand the value max |5_z] is small (see (6)):
—_— 3 2 o
d]('//,Gy,c?l//,&): j{VZCZ —F(l—ﬂJ+a)cz} }g&—’n)ds <0.
%0 c 3 c

Then we obtain the domain C~5y with the free boundary 7, sothat J(i7,7) < J(w,») =d,
where i is the solution of (1)-(4) in C~;y. Let G; be the symmetrization of C~;7 domain in
relation to axis y and let i~ be the solution of (1)-(4) in G;. Then, according to Lemma 3,
Jw .7 )<J(w,y)(here y" is the free boundary of GJ). We choose curve »' so

that G; c Gy, .Since v (X, y)—w'(X,y) = 0in é,* , using Lemma 3,we obtain inequality
"o * 2
d<J(y'y)<I@ 7)) +v bmes(Gy,\Gy*)<d

for small value mes(Gy, \G. ) Thus, we have a contradiction, since (',7") € R. The other
cases are similar. The lemma is proved.

Let z, =X, +iy, be any interior point of y and K| :|z—z,|<r, so that K, =G is
for small r. Using methods [3], [7], we will prove the existence of the analytic function
g(t), t=S+in indomain G, N K,, witch is continuous in G, "K and g(t) =t on y.
Let @ = w(t) be the conformal mapping of G, m K on the upper half-plane. According to
Schwartz’s principle, the functions @, (t) = g(t) +t and D, (t) =g(t) —t can be
analytically continued through the segments of w—plane, which conformy . Then

t(w) = & -,

is analytically continued there too. Thus, y is an analytic arc.

Now we can prove the theorem.

Theorem 1. Let S: y=g(x),a<x<b,where g(x)eC?[0,a] and g(x) is the
monotonically increasing function, such that g(0)=c, g(a)=b,c<b, g'(0)=0, g'(a) =0.
Suppose that we have (6), (7) too. Then there exists (l//,y) — the unique solution of (1)-(5)
—, where y is the monotonically increasing arc, analytical in the neighborhood of each of
its points, lying inside G, w(x,y) is the continuous functional in G,, w(x,y) is the
continuously differentiable function in G_y except, perhaps, (a,h), ¢ <h<b ((a,h) which is
the end of y ).

Proof. Let (y,7) be the limit pair. We consider only the case when
ynI,={x=a,h<y<b},c<h<b. Let y, be the part of », such that points (0,c) and (a,
h) are the ends for y,. Evidently that J(y,7)=J(v,7,)=d. Then we consider the
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minimum problem of the functional J on R, and show that d, =J(y,7,), where d, =infJ
on R,. We have (v,y,)€R, and d, <J(y,y,)=d. Now suppose that (y,y,) is any
admissible pair, i.e. (y,7,)€R,. Let us choose (v,,7,)€R, so that G, <G, . We can
show that

d<J(y,, 7)< J('//1'71)+V2b mes(Gyz \Gyl)

(see Lemma 4). Then d<d, +¢&, where &=v°b mes(G, \G, ). Letting £—0, we

conclude that d <d,. Thus, d, =J(y,7,) . Evidently (v, y,) is the solution of (1)-(5). The
uniqueness of solution (v, ) follows from [4] (here we also use (9)). Thus, the theorem is

proved.
5. Approximate solution. In this section we suppose, that solution (v,y) of (1) — (5)

satisfies the conditions: w(X, y)eCl(G_y),yand S have the finite number of common
points. Using the Friedrichs transformation [4], we obtain

J (z):_U (z +&z)2+ vg®z’z. +2wg(p-1)zz; dXd¢
1 ) X g g 77

P

where A=(0<x<a,0<p<l), p(x,2)=w(X z9(X)), z(x,) is the solution of equation
(X, z) — o =0.We will study a minimum problem of the functional J,(z) with a constant
domain of integration on the following set:

D, ={z:2eC(A), oz, € C(A), 2(0,1) =0, 2(x,0) =0, (Eni)nz\/az{p >0} .

We define z,(x,p) as the solution of equation z(X,¢)—z=0,where
o(x,2) =y (x,zg(x)) and (y,y) is the solution of(1)-(5). Evidently, that z,e D, and
z,(X, @) :\/En(x, ®), (X,¢) €A, where n(x,¢)is the smooth function, such that
n(x,0)=0,0<x<a.

Lemma 5. The function z,(x, ), (X, @) e A is a minimum for J,(z)on D, .

Proof. Let us define w(x,9) according to the formula w=In z. Then we compute,

J,(w) = H{(W +%X 7)° + = +v2g2e2WW +2wg (p—1e"e }d)\j\?(p

.1[( )4((;1 —ZI(l g)”{[w SW, — W, (W, +E} +
0 ©

—2w,
e [W oW +(W,,0w+ow,) ]}dngdq)

£p

1 a
+2v° [ (1-2)[ g° (e *Dan? (x1)dex,
0 0

where J,(z) = J, (") = J, (W), W, =W, +&5W, SW=W-W,, W, =Inz,, 0Z =727, = Z,0W,
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0<e<1, zisany element of D,. Now, using the Friedrich formula [4]

3,0 = 3,00) + - 3,0 |y +] @) S22 (10)
de de

0

we conclude that J,(z,)=J,(w,)<J,(w)=J,(z) for every zeD,. Thus the lemma is

proved.
We will minimize J,(z) on D,, using the polynomials

2,(%,0,8) =2,(%, @) =[p > > a;x)o", n=sup (k+m,),
k=0 j=0 <k<m

where a, € E, (the Euclidian space),

r=>(mg+1), D =E;nD;, Ej:> a,-1=0,
k=0 k=0

D/ = {akj :(mi)gz\/azw > O}.

We will seek a,; as a solution of nonlinear Ritz system equations (see [8], [9], too).

MJr/l:O p=0,1,2,...m;
0a,,
oJd.\a,;
%M)ZO,qZI,Z,--- m,; p=0,1,...m; (11)

Zako—le, Js(akj):Jl(\/Ezz aijjfpk)-
k=0

k=0 j=0

Theorem 2. There exists a minimum a,; € D, of the functional J, on D,, where a,
is an interior finite pointin D, .

Proof. Let it be sequence a,, —> o when p— o, i.e. a,, are unbounded in E, . Let
us define J,(cy,) =J5(M ,¢,) , Where

ME=Y > el =
k=0 j=0 p
Then we can show, that J; — oo, if p—o0. On the other hand J,(a,) is unbounded
function on oD, . So the theorem is proved.
Remark. Now, using the Lagrangian function, we conclude that a’k} is a solution of
systems (11). Thus, there exists a solution of (11) for every fixed n.
6. Regularity. At first, we define z, (x,¢;a,) =2,.

Lemma 6. The sequence z, is the minimizing sequence for J, on D, .
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Proof. Let us define ||z|| according to the formula

Il z||=max | z| +mex | z, |+max | oz, |,

where (x,¢) € A. For sufficiently small value £>0 we can choose the polynomial
P, (x,9) sothat || z, —+/pP, |l< &, where

My

2, =JoP,(x,0) €D,, i by X o".
k=0 j=0

Then we obtain J, (z,)-d <J,(z,)-d =J3,(z,) - J,(z,) <&, here d =J,(z,) < J,(z)
for every z e D, (see Lemma 5) and £ > Ois sufficiently small. Thus the lemma is proved.

The function y (x) =g(X)z, (x,],a:j), 0<x<a is an approximate equation of free
boundary » in problem (1)-(5).

Theorem 3. The sequence z,(x,1, a’k}) —7,(x,1) strongly in L,(0,a).

Proof. According to Lemma 6 ¢, = J,(z,) - J,(z,) — 0, when n —oo.

Taking into consideration (10), we obtain the inequality

f-a 0, <,

which can be written, as
1 a
2v? j (1-¢) j g2 (x)e2 D sn? (x Ddedx < &, ,
0 0

where w, =w,+e(W,-w,), W,=Inz,, w =Inz,, 0<e<1. Then we get the
estimation

a 2 .
J w? (x,Ddx < “2 , oL=1,-1,, (6z=0w exp w,).
2 vZc

Thus || z,(x,1,84) = Z,(X,D) [l 0y—>0, when n—co.

References

1. Friedman A. Axially symmetric cavities in flows / Friedman A. // Comm. Partial Differential Equations. —
8 (1983). — Ne 9. — P. 949-997.

2. Alt H. W. Axially symmetric jet flows / H. W. Alt, A. Friedman, L. A. Caffareli // Arch. Rational Mech. Anal. —
1(1983). —Ne 28. —P. 97-149.

3. Garabedian P. R. Axially symmetric cavitational flow / Garabedian P. R., Lewy H., Schiffer M. // Ann. Math. —
56 (1952). — Ne 3. — P. 560-607.

4. Friedrichs K. 0. Uber ein Minimumproblem Fur Potentialstromungen mit freien Rand / Friedrichs K. 0. //
Math. Ann. — 109 (1934). — P. 60-82.

5. Danyljuk I. I. On integralfuctionals with a variable domain of integration / Danyljuk 1. 1. // Proc. Steklov Inst,

of Math. — 118 (1972). — English: AMS (1976). — P. 1-112.

Courant R. Methods in Mathematical physics / R. Courant, D. Hilbert. — New-York. — 1 (1953). — P. 1-260.

Minenko A. S. On one thermophysical problem with a free boundary // Dokl. Akad. Nauk. Ukraine. Ser. A. —

1979. — Ne. 6. — P. 413-416. (In Russian).

~No

Problems of Artificial Intelligence 2016 Ne 1 (2) 13



Minenko A. S.

8. Danyljuk I. 1. On the Ritz method in one nonlinear problem with a free boundary / I. I. Danyljuk, A. S. Minenko //
Dokl. Akad. Nauk. Ukraine. Ser. A. —1979. —Ne 4. — P. 291-294. (In Russian).

9. Danyljuk I. I. On one optimization problem with a free boundary / I. I. Danyljuk, A. S. Minenko // Akad. Nauk.
Ukraine. Ser. A. —1979. — Ne 5. — P. 389-392. (In Russian).

10. Minenko A. S. Investigation of a problem of whirlwind liquid stream with a free boundary. Nonlinear
boundary problems / A. S. Minenko // Akad. Nauk. Ukraine. Inst. Applied Math. Mechanics. — 1993. — Ne 5. —
P. 58-72. (In Russian).

RESUME
A. S. Minenko
Axially Symmetric Flow

Background: A new class of problems with a free boundary and hydrodynamic origin
is investigated, when on part of the free boundary the nonlinear Bernoulli’s law is set in
kind of inequality. The existence of a classical solution of respective nonlinear problem is
proved. The free boundary proves to be an analytic monotonic curve. The proof is
underlain by the Schiffer’s method of interior variations and Steiner symmetrization.

Materials and methods: This paper is aimed at development of exact and approximate
methods of solution of nonlinear problems with a free boundary. The following methods
are devised:

— justification of correctness of class of free boundary problems with variational nature;

— construction of approximate solution of such nonlinear problems by the Ritz
method, and investigation of their convergence.

Results: The convergence of the Ritz approximation to the exact solution in the
integral metric is ascertained. The developed methods can be applied for studying of the
whole class of free boundary problems with variational nature.

Conclusion: The paper proves the existence of a classical solution of the new class of
free boundary problems of the Bernoulli’s type. The approximate solution converging
metrically to the exact one in L, is constructed.

The article entered release 25.02.2016.
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