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The article examines a method for malware detection based on the analysis of grayscale images.
Thirteen advanced convolutional neural networks, including DenseNet201, MobileNet, and others,
are utilized for analysis based on the Malimg dataset. Experiments were conducted, including training
and hyperparameter tuning, to optimize the models' performance. It is shown that models such as
DenseNet201 and MobileNet achieve high accuracy, precision, recall, and F1 scores. This approach
enhances the malware detection process, ensuring high efficiency and resilience against traditional
methods of bypassing security systems. The application area of this work includes modern
cybersecurity systems, the development of new methods for malware analysis, and protection
against cyberattacks.
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B cratbe paccmatpuBaetcs meTod ObBHapyXeHus BpedOHOCHOro MPOrpamMMHOr0 obecrneveHus Ha
OCHOBE aHanuaa n3obpaxeHuin, NpecTaBneHHbIX B OTTeHkax ceporo. [Ina aHanusa nenonb3ytotes 13
COBpPEMEHHbIX CBEPTOYHbIX HEMPOHHLIX ceTer, Bkntovaa DenseNet201, MobileNet, n gpyrvne, Ha ocHoBe
Habopa paHHbix Malimg. [MpoBedeHbl 3KCMEPUMEHTHI, BKHOYalwme obydeHne Wu HacTPOWKy
rnepnapameTpoB Ans ONTUMU3aUMKM NpoM3BOAUTENbHOCTM Mogernen. [okazaHo, YTo Mogenu, Takve
kak DenseNet201 n MobileNet, gocturaoT BbICOKOM TOYHOCTM, MOSIHOTLI, TOYHOCTU U F1-meTpuku.
JaHHbIi noaxod MO3BONSET YMyyllMTb npouecc obHapyxeHusi BpegoHocHoro 1O, obecneuymBas
BbICOKYI0 3(0(DEKTUBHOCTb M YCTOMYMBOCTb K TpPagMUMOHHbIM MeTogam obxoda cucTeM 3aluThbl.
Ob6nacTtb NpMMeHeHUs paboTbl — COBPEMEeHHble cucTeMbl knbepbe3onacHoCTH, Bkovasi pa3paboTky
HOBbIX METOA0B aHanm3a BpegoHocHoro MO u 3awmTy oT knbeparak.

KnioueBble cnoBa: O6HapyxeHne BpegoHocHoro MO, aHanua BpegoHocHoro [0,
nepeHoc obyyeHnsi, obHapy>xeHne Ha oCHOBe U3obpakeHn, knbepbesonacHoCTb
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Introduction

Malware, short for malicious software, refers to any software designed to disrupt,
damage, or gain unauthorized access to computer systems [1]. As cyber threats continue to
evolve, malware has become increasingly sophisticated and diverse, posing significant
challenges to cybersecurity. The ongoing battle between malware distributors and the
extensive community dedicated to malware detection remains intense [2]. Cybercriminals
develop malware due to its substantial destructive capabilities.

Malware detection methods can be divided into three main categories [3]. Signature-
based detection is one of the earliest and most widely used methods for identifying malware.
It works by scanning files for specific patterns or signatures characteristic of known malware
[4]. When a match is found, the file is flagged as malicious. While effective for known
threats, this method is limited by its reliance on an up-to-date database of malware
signatures. It fails to detect new, unknown malware (zero-day attacks) and malware that
employs polymorphic and metamorphic techniques to alter its signature with each infection

[1].

Dynamic analysis, or behavioral analysis, involves executing the suspicious file in a
controlled environment (sandbox) and observing its behavior. This method focuses on the
actions performed by the software, such as file modifications, network communications, and
interactions with the operating system. Dynamic analysis can detect malware that employs
obfuscation techniques to evade static analysis. However, it is more resource-intensive and
time-consuming, requiring a secure environment to execute and monitor the software [1].

Hybrid analysis combines the strengths of both static and dynamic analysis to provide
a more comprehensive approach to malware detection. By integrating static analysis’s speed
and automation with dynamic analysis’s detailed behavioral insights, hybrid analysis can
detect a broader range of malware, including those that evade one type of analysis alone.
This approach helps to improve detection accuracy and reduce false positives, making it a
robust solution for modern malware threats. Implementing a hybrid analysis system can be
quite complex due to the need to integrate static and dynamic analysis tools seamlessly [5].

In recent years, numerous works have applied deep learning or NLP techniques for
malware detection [1, 6-8]. This innovative approach involves transforming malware
binaries into images and analyzing these images using convolutional neural networks
(CNNs). The rationale behind this method is that the binary structure of malware can reveal
unique patterns and features when visualized, which can be effectively captured and
classified by CNNs.

Despite the advancements in malware detection techniques, several challenges remain.
Signature-based detection methods are limited by their inability to identify new, unknown
malware and those that employ sophisticated evasion techniques. While effective in
uncovering hidden behaviors, dynamic analysis is resource-intensive and not scalable for
large-scale real-time protection. Although promising, hybrid analysis faces complexities in
seamlessly integrating static and dynamic methods. Moreover, the increasing sophistication
of malware, including the use of advanced obfuscation and encryption methods, continues
to outpace traditional detection mechanisms, necessitating the development of more
advanced and adaptive approaches.

Hybrid analysis and dynamic analysis of malware typically require executing it in a
controlled environment to observe its behavior, which can be resource-intensive and risky.
Static analysis, on the other hand, involves disassembling the malware code to inspect its
structure without executing it, but advanced obfuscation techniques can thwart this approach.
Image-based malware detection, however, offers a distinct advantage as it does not
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necessitate executing or disassembling the malware. Instead, it transforms malware binaries
into images, leveraging deep learning models to detect malicious patterns, thus providing a
safer and often more efficient alternative for malware analysis.

The main contributions of this work are listed below:

-The application of 13 pre-trained transfer learning models for enhanced malware
detection, demonstrating the effectiveness of image-based deep learning techniques.

- A detailed performance comparison of these models using metrics such as accuracy,
precision, recall, and F1-score, along with accuracy plots per epoch.

- An extensive evaluation of other authors’ works using the same Malimg dataset
showing that the proposed models outperform existing approaches.

The remainder of this paper is organized as follows: "Literature review" section
provides a comprehensive review of related works in malware detection, mainly focusing on
imagebased approaches. "Materials and methodologies” section outlines dataset
descriptions, transfer learning models, image conversion processes, and evaluation metrics.
"Experiments and results" section covering data preprocessing and the results of the
experiments. Finally, "Conclusion” section concludes the paper by summarizing the
essential findings and discussing the limitations and potential directions for future research.

Literature review

DEXRAY [9] proposed a method that converts the byte-code of DEX files from the
Android app into grayscale images and processes them with a 1-dimensional convolutional
neural network (CNN), demonstrating high detection effectiveness on a dataset of over
158,000 apps. The study emphasizes the potential of image-based deep learning for malware
detection, providing a simple yet effective baseline for future research in this domain.
Additionally, the impact of time decay and image-resizing on DEXRAY’s performance and
its resilience to obfuscation were investigated. This work contributes to the field by offering
a foundational approach that can guide further exploration and development in deep
learningbased malware detection. The simplicity of its design choices, intended to establish
a baseline, may limit its ability to capture complex patterns in malware behavior, potentially
leading to lower detection accuracy compared to more sophisticated models that use
advanced feature extraction and data augmentation techniques. Another concern is the
model’s resilience to adversarial attacks and sophisticated obfuscation techniques, which
needs further investigation as malware developers often use advanced methods to evade
detection.

To this effect, [10] suggested a novel static malware detection method utilizing an
enhanced AlexNet convolutional neural network (CNN) to address the inefficiencies of
traditional machine learning and dynamic analysis methods in classifying large quantities of
malware. By converting malware bytes into color images and improving the AlexNet
architecture, the study aims to extract the texture features of malware better. A data
enhancement method is employed to tackle unbalanced datasets. Extensive experiments
using the Microsoft malware dataset and the Google Code Jam (GCJ) dataset demonstrate
high accuracy, achieving 99.99% for the Microsoft dataset and 99.38% for the GCJ dataset.
The results indicate significant improvements in both accuracy and detection efficiency. The
approach involves many model parameters, which can complicate the model’s
implementation and increase computational requirements. Additionally, the method
currently analyzes only one sample feature, potentially limiting its effectiveness. The authors
suggest that future work will address these limitations by extracting more features, such as
entropy images and APIs, and combining dynamic and static analysis. Moreover, they plan
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to conduct experiments using real-world malware datasets to validate and enhance the
proposed method’s performance.

[11] combines transfer learning and deep convolutional neural network (CNN) models
to enhance malware detection. Initially, the pre-trained VGG16 model is fine-tuned with
various hyperparameters and used as a feature extractor. Alongside VGG16, three other pre-
trained CNN models—VGG19, ResNet50, and InceptionVV3—are utilized to extract diverse
feature maps. These features are concatenated to form a comprehensive feature map, which
undergoes feature selection processes to eliminate irrelevant data. The study then employs
six classifiers K-Nearest Neighbor (K-NN), Support Vector Machine (SVM), Random
Forest (RF), Multi-Layer Perceptron (MLP), Extra Tree (ET), and Gaussian Naive Bayes
(GNB) using the stacked feature map as the training vector. The MLP model is further
optimized using a randomized search algorithm, achieving the best performance with
98.55% accuracy, 99% precision, 99% recall, and 99% F1-score on the Mallmg dataset, and
94.78% accuracy on real-world malware datasets. This method proves effective against
standard obfuscation techniques without requiring code disassembly or dynamic analysis.
Integrating more advanced feature selection techniques and evaluating the system’s
performance against emerging malware threats could further enhance its robustness and
applicability.

The literature review reveals that image-based deep learning approaches are
increasingly utilized for malware detection and classification, demonstrating significant
potential in this field. These methodologies typically involve converting malware binaries
into visual representations, such as grey-scale or color images, which are then processed
using advanced convolutional neural networks (CNNS).

Despite their promise, several common challenges persist across these studies. These
include the high computational complexity associated with fine-tuning pretrained models,
the large number of model parameters, and the limited scope of feature analysis.
Additionally, while some methods show resilience to standard obfuscation techniques, the
effectiveness of these approaches against sophisticated obfuscation and adversarial attacks
remains a critical area for further investigation.

Materials and methodologies

This section outlines the technologies used and provides the background information
necessary to comprehend the proposed methodology.

Transfer Learning. Transfer learning has become an indispensable technigue in
modern deep learning, particularly for image classification tasks. It involves utilizing models
pretrained on large-scale datasets, such as ImageNet, which contains millions of labeled
images across thousands of categories. The pretraining process allows these models to learn
awide variety of features, from simple edges and textures in the early layers to more complex
patterns and object parts in the deeper layers [12].

The core idea behind transfer learning is to leverage the knowledge acquired by these
pre-trained models to improve performance on new tasks with limited data. Instead of
training a neural network from scratch, which requires substantial computational resources
and time, transfer learning allows for adapting pretrained models to a new, smaller dataset.
This adaptation can involve either training the entire network further on the latest data or
using the pre-trained model as a fixed feature extractor and training only the final
classification layer.

Several well-known pre-trained models are widely adopted for transfer learning in
various image recognition tasks. These include:
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VGG16 and VGG19: Developed by the Visual Geometry Group (VGG) at the
University of Oxford, these models are known for their simplicity and depth. They consist
of 16 and 19 layers, respectively, and use small receptive fields (3x3 convolutional filters)
throughout the network. Their consistent performance has made them popular choices for
many computer vision tasks [12, 13].

ResNet (Residual Networks): Introduced by Microsoft Research, ResNet models, such
as ResNet50, ResNet101, and ResNet152, utilize residual learning to tackle the vanishing
gradient problem in intense networks. These models include shortcut connections that skip
one or more layers, allowing gradients to flow directly through the network. This enables
the training of much deeper architectures without performance degradation [14].

MobileNet and MobileNetV2: Developed by Google, these models are designed to be
efficient and lightweight, making them suitable for mobile and embedded vision
applications. They use depthwise separable convolutions to reduce the number of parameters
and computational complexity while maintaining high accuracy [15-17].

DenseNet (Densely Connected Convolutional Networks): Proposed by researchers at
the University of California, Berkeley, DenseNet models, such as DenseNet201, connect
each layer to every other layer in a feed-forward fashion. This connectivity pattern helps
mitigate the vanishing gradient problem, strengthens feature propagation, and enables
efficient parameter usage [18].

Xception: An extension of the Inception architecture, Xception (Extreme Inception)
replaces the starobustception modules with depthwise separable convolutions. This model,
proposed by Frangois Chollet, achieves superior performance by mapping cross-channel and
spatial correlations independently [19].

InceptionResNetV2: Combining the strengths of Inception modules and residual
connections, this model integrates the architecture of Inception with the residual connections
of ResNet, resulting in a highly efficient and powerful network [20].

EfficientNet: Developed by Google Al, EfficientNet models utilize a compound
scaling method that uniformly scales all dimensions of depth, width, and resolution using a
fixed set of scaling coefficients. This approach achieves state-of-the-art accuracy while
being computationally efficient [21].

NASNetLarge: The Neural Architecture Search Network (NASNet), developed by
Google, uses reinforcement learning to automate the design of neural network architectures.
NASNetLarge represents a highperforming model discovered through this automated search
process [22].

These pre-trained models provide a robust foundation for transfer learning, enabling
researchers and practitioners to perform highly on specific tasks with relatively little
additional training. Their widespread adoption and proven efficacy make them
indispensable tools in the modern deep-learning toolkit. The specifications of the various
pre-trained models used in this study are detailed in Table 1.

The overall workflow of the proposed method is depicted in Figure 1. The first step
involves converting the binary files into images, as detailed in 3.3. After obtaining the
images, several data preprocessing steps are applied to prepare the dataset. The prepared
images are then split into training, testing, and validation sets. Thirteen pretrained models
are applied to the training dataset and evaluated on the test and validation datasets to assess
overfitting and model robustness. Optimizer parameters, including Adam and SGD, are
tested across all models.
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Table 1: Specifications of Various Pretrained Models
Model (Dl_e;;é]rs) sp?l\r/lairlrl]ieotr?;) Architecture Type Unique Features
ResNet50 50 25 Residual Residual connections
ResNet101 101 45 Residual Residual connections
ResNet152 152 60 Residual Residual connections
Xception 71 22 Depthwise Separable Conv | Extreme Inception with separable convolutions
MobileNet 28 4.2 Depthwise Separable Conv | Efficient for mobile and embedded systems
MobileNetV2 53 34 Depthwise Separable Conv | Inverted Residuals and Linear Bottlenecks
VGG16 16 138 Sequential 3x3 Convolutional layers
VGG19 19 144 Sequential 3x3 Convolutional layers
InceptionV3 48 23.8 Inception Factorized convolutions, auxiliary classifiers
InceptionResNetV2 | 164 55.9 Inception + Residual Combines Inception and Residual connections
DenseNet201 201 20.2 Densely Connected Each layer connected to every other layer
EfficientNetBO 237 5.3 Compound Scaling Scales depth, width, and resolution uniformly
NASNetLarge 88 84 Neural Architecture Search | Discovered via reinforcement learning
promeeeenees Modelling  f---------1
.......... Binary to image o
E Train -7 459 ———>
g [ro0r] comemns P
@) | .10 ' Test - 957 ,ﬂ—l
A
........................................................... Valid - 923 T I I I

Evaluation

Fig. 1: Workflow of proposed method

Dataset description. The dataset used in this study is the Malimg Dataset [23], a
comprehensive collection of malware images that has become a benchmark for malware
detection and classification research. This dataset was created by converting malware
binaries into grayscale images, a process that enables the application of image-based
techniques for malware analysis. The Malimg Dataset includes various malware families,
providing a diverse set of samples for training and evaluating machine learning models.
The Malimg Dataset is organized into different directories, each representing a specific
malware family. Within each directory are multiple grayscale images, each corresponding
to a different instance of malware. These images are generated by interpreting the binary
content of the malware files as pixel values, visually representing the malware’s structure.

Each grayscale image is created by reading the binary content of a malware file and
interpreting it as a sequence of pixel values. The image’s width is fixed, and the length of
the binary file determines the height. This approach transforms the binary data into a two-
dimensional array, scaled to fit within the image dimensions. The resulting images
highlight various structural patterns and features of the malware binaries, making them
suitable for CNNs analysis. A list of some joint malware families in the dataset, along
with the number of samples in each class, is shown in Table 2.
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Table 2: Distribution of Samples in Malware Families
Malware Number of Samples | Percentage (%)
Family

Allaple.L 2,949 14.61
Allaple.A 2,949 14.61
C2Lop.gen!G 2,930 14.51
Fakerean 1,985 9.84
C2Lop.P 1,466 7.26
Lolyda.AA 3 1,239 6.13
Lolyda.AA 2 1,230 6.09
Lolyda.AA 1 1,133 5.61
Swizzor.gen!l 1,325 6.57
Swizzor.genlE 1,320 6.55
Yuner.A 800 3.96
Instantaccess 431 2.13
VB.AT 439 2.18
Dontovo.A 162 0.80
Autorun.K 106 0.53
Rbot!gen 158 0.78
Alueron.genlJ 198 0.98
Malex.gen!J 136 0.67
Lolyda. AT 159 0.79
Adialer.C 125 0.62
Wintrim.BX 97 0.48
Dialplatform.B 177 0.88
Skintrim.N 80 0.40

Figures 2 and 3 display examples of malware classes from the Malimg dataset:
Instantaccess and Adialer. C. Each figure contains three samples from their respective
classes. As observed, the samples within each class are pretty similar to one another,
indicating a consistent pattern or structure characteristic of the class. However, when
comparing samples across different classes, such as Instantaccess and Adialer. C, there
are noticeable differences in their visual features, highlighting the distinctiveness between
different malware classes.

Converting binaries to images. Generating images from malware binaries is a
crucial step in applying image-based techniques for malware detection. This innovative
approach involves converting the raw binary data of malware files into visual
representations, allowing machine learning models, particularly convolutional neural
networks (CNNs), to analyze and classify malware based on visual patterns and structures.
The first step in this process is reading the binary content of each malware file. The binary
file, essentially a sequence of bytes, is read into a buffer containing the raw data that
represents the malware’s code and structure. Once the binary content is read, it is reshaped
into a two-dimensional array to form an image by setting a fixed width, while the height
is determined by the total number of bytes in the file. This reshaping process transforms
the linear sequence of bytes into a grid format, which can be visualized as a grayscale
image. Each byte value, ranging from 0 to 255, corresponds to a pixel intensity, creating
a visual representation that highlights the structural and content-based characteristics of
the malware. This process is illustrated in Figure 4.
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a) b) C)
Figure 2. Adiler C class samples

a) b) C)

Fig. 3. Instantaccess class samples

Malware Binary
011100110101
100101011010
10100001..

Fig. 4: Converting malware binary to image [23]

After the initial conversion, the images undergo further processing to ensure they are
suitable for analysis by CNNs. This preprocessing includes resizing the images to a
uniform dimension, typically 224x224 pixels, standardizing the input size for the neural
network, and facilitating efficient training. Additionally, the pixel values are normalized
to a range of [0, 1], an important step that scales the pixel values to a range optimal for
neural network processing, helping to improve the model’s convergence during training.
The transformation of malware binaries into images reveals distinctive patterns indicative
of different malware families. By analyzing these visual patterns, CNNs can learn to
differentiate between various types of malware and benign software, leveraging the rich
feature extraction capabilities of deep learning. This novel method of converting raw
binary data into analyzable images provides a powerful tool for enhancing malware
detection through advanced machine learning models.

Evaluation metrics. Multiple evaluation metrics were utilized to assess the
performance of the machine learning algorithms. Given the multiclass nature of the
dataset, these metrics were computed individually for each class. An aggregate metric was
then derived by combining the individual class metrics to assess the model’s performance
holistically

Accuracy: As defined in Equation 1, Accuracy represents the ratio of correctly
classified instances to the total instances in the dataset. It provides a general indication of
the algorithms’ effectiveness in accurately classifying Android malware.

(TP + TN)

(TP + TN + FN + FP) M

Precision: As shown in Equation 2, Precision is the ratio of true positive predictions
to all positive predictions. It measures the algorithms’ ability to correctly identify malware
instances without incorrectly classifying benign applications as malware.

Accuracy =
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.. TP
Precision = ——— (2)
(TP + FP)

Recall (Sensitivity): Recall, as detailed in Equation 3, is the ratio of true positive
predictions to all actual positive instances. It evaluates the algorithms’ capability to detect

all malware instances without missing any.

TP
Recall = ) (3)

F1-score: The F1-score, as illustrated in Equation 4, is the harmonic mean of
precision and recall. It offers a balanced metric that considers both precision and recall,
which is particularly beneficial in scenarios involving imbalanced datasets with varying
numbers of malware and benign samples.

2 * precision * recall
F1 — score = — (4)
(precision + recall)

In the formulas, TP (True Positives) represents the count of correctly predicted
malware instances. TN (True Negatives) indicates the instances accurately predicted as
benign. FP (False Positives) denotes the count of benign cases incorrectly classified as
malware. FN (False Negatives) signifies the number of malware instances mistakenly
classified as benign.

Experiments and results

Experimental setup. The experiments for this study were conducted on the Kaggle
platform, leveraging its robust computational resources to facilitate efficient model
training and evaluation. The environment provided several configurations, including CPU,
GPU, and TPU instances. For CPU and GPU notebook sessions, the execution time was
capped at 12 hours, while TPU notebook sessions had a maximum execution time of 9
hours. The platform offered 20 gigabytes of auto-saved disk space and additional
scratchpad disk space that was not preserved outside the current session.

The CPU setup included 4 CPU cores and 30 gigabytes of RAM, providing a balanced
configuration for initial data preprocessing and model training. The P100 GPU
configuration featured 1 Nvidia Tesla P100 GPU, 4 CPU cores, and 29 gigabytes of RAM,
offering enhanced computational power for more intensive deep learning tasks. For even
more excellent performance, the T4 x2 GPU setup included 2 Nvidia Tesla T4 GPUs
alongside 4 CPU cores and 29 gigabytes of RAM, facilitating faster model training and
improved handling of larger datasets. The TPU 1VM configuration was the most
powerful, with 96 CPU cores and 330 gigabytes of RAM, designed to handle extensive
deep learning workloads with high parallelism and efficiency. This diverse range of
computational resources ensured that all experiments were conducted efficiently, with
adequate processing power, to achieve reliable and accurate results.

Data preprocessing. This study’s data preprocessing pipeline was meticulously
designed to prepare the Malimg dataset for practical training of deep learning models. The
dataset, comprising malware binaries converted into grayscale images, required several
key preprocessing steps to ensure consistency and optimize model performance.

Initially, the dataset was divided into training, validation, and test sets. The data and
corresponding labels were read from their respective directories for each set. The images
were resized to a uniform dimension of 224x224 pixels using OpenCV. This resizing
ensured that all images had a consistent input size, facilitating efficient training across
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different neural network architectures. After resizing, the images were converted into
NumPy arrays and organized into their respective datasets (training, validation, and test).
The data within each set was shuffled to ensure randomness and avoid any potential bias.
The labels were then encoded using the LabelEncoder from scikit-learn, transforming the
categorical labels into numerical values suitable for the model. These numerical labels
were subsequently converted into one-hot encoded vectors using the to_categorical
function from Keras, which is crucial for the categorical cross-entropy loss function used
during training. The final preprocessed datasets were then used for model training and
evaluation.

Result of experiments. Table 3 and 4 comprehensively compare the performance
metrics for various pre-trained models fine-tuned using two different optimizers: Adam
and SGD, respectively. The metrics evaluated include accuracy, precision, recall, and F1-
score. The results show a consistent trend where the Adam optimizer generally
outperforms the SGD optimizer across most models and metrics.

Table 3: Performance comparison of various models
using Adam optimizer

Models Accuracy Precision Recall F1-score
ResNet50 98.5 98.6 98.5 98.5
ResNet101 97 97 98 97
ResNet152 98 98 98 98
Xception 98 98.7 98.5 98.5
MobileNet 98.8 98.9 98.9 98.9
MobileNetV2 98.7 98.9 98.7 98.6
VGG16 82 83 82 81
VGG19 86 86 86 85
InceptionV3 97 95 97 96
InceptionResNetV2 97 96 97 96
DenseNet201 99.0 99.0 99.0 99.0
EfficientNetBO 98 98 98 98
NASNetLarge 98 98 98 98

Table 4: Performance comparison of various models
using SGD optimizer

Models Accuracy Er:ecm Recall F1-score
ResNet50 96 95 96.5 96
ResNet101 96 94 96 95
ResNet152 97 96 97 96
Xception 93 90 93 91
MobileNet 97 96 97 96
MobileNetV2 97 96 97 96
VGG16 76 76 77 74
VGG19 12 9 12 8
InceptionV3 96 95 96 96
InceptionResNetV2 95 95 95 94
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DenseNet201 97 96 97 96
EfficientNetBO 94 93 94 93
NASNetLarge 92 91 93 92

DenseNet201, Xception, MobileNet, MobileNetVV2, and ResNet50 are among the top-
performing models, achieving near-perfect scores across all metrics. DenseNet201 stands
out with an impressive 99.0% accuracy, precision, recall, and F1-score, indicating its
exceptional capability in accurately classifying malware. Similarly, MobileNet and
MobileNetV2 exhibit excellent performance with accuracy and F1-scores around 98.8%
and 98.7%, respectively. These models provide high accuracy and maintain a strong
balance between precision and recall, ensuring that both true positive and true negative
rates are maximized.

Top-performing models’ training and validation accuracy and loss lines by epoch are
shown in Figures 5, 6, 7, 8, and 9 for ResNet50, DenseNet201, Xception, MobileNetV2,
and MobileNet, respectively. As observed, only the MobileNet model exhibits training
and validation lines that are closer together, indicating its robustness and consistency in
performance across different epochs. This closer alignment suggests that MobileNet
generalizes better and is less prone to overfitting than the other models, making it a highly
practical choice for malware detection using image-based deep learning techniques.

Table 5 illustrates the effectiveness of various malware detection methods applied to
the Malimg dataset. Different studies have reported F1-scores ranging fromapproximately
70% to 98%. The proposed approach using MobileNet achieves a remarkable F1-score
of 98.9%, demonstrating its superior performance in comparison to the other methods
listed.
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Fig. 5: ResNet50
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Table 5: Comparison of other authors’ works with this work using
F1-score
Author Year | Suggested method F1-score (%0)
[24] 2023 | Segmentation-based fractal texture analysis and KNN 70.14
98, but overfitting after 5th
[25] 2023 | Custom CNN model epoch
[26] 2023 | Butterfly construction-based vision transformer (B_ViT) model | 74.29
[27] 2023 | Attention-based Cross-modal CNN 97.6
[28] 2024 | EfficientNetBO 97
Thiswork | 2024 | MobileNet 98.9
Conclusions

Summary. The application of artificial intelligence offers significant potential for
solving complex problems across various domains, including healthcare, finance, and
autonomous systems [29-32]. This study applied an image-based analysis approach for
malware detection utilizing deep learning techniques on the Malimg dataset. Using
malware binaries represented as grayscale images, advanced convolutional neural network
architectures such as VGG16, ResNet50, and MobileNet were leveraged to extract high-
level features and classify various malware families. Experiments on Kaggle’s
computational platform included hyperparameter tuning to optimize model performance.
This comprehensive approach demonstrated the effectiveness of these models in
accurately distinguishing between different types of malware.

The trained models on the Malimg dataset demonstrated high effectiveness in
malware detection through image-based analysis. Models such as DenseNet201,
MobileNet, and ResNet50 achieved notable accuracy, precision, recall, and F1 scores,
indicating their robustness in classifying various malware families. Hyperparameter
tuning further optimized their performance, showcasing the models’ ability to generalize
well across the dataset. When comparing optimizers, models trained with the Adam
optimizer consistently outperformed those trained with the SGD optimizer.

The training and validation accuracy analysis over epochs for various models
revealed insightful trends, particularly highlighting MobileNet’s robustness. Among the
models, MobileNet showed the closest alignment between training and validation
accuracy lines, suggesting better generalization and minimal overfitting. This consistency
indicates that MobileNet is particularly effective in maintaining high performance across
different data splits, making it a reliable choice for malware detection tasks. The
comparison across epochs for models like DenseNet201, ResNet50, and Xception also
demonstrated strong performance. Still, the slight divergence between training and
validation curves suggested a higher tendency towards overfitting compared to
MobileNet. These findings emphasize the importance of monitoring model performance
over epochs to ensure optimal training and robust real-world application.

Limitations. While this study demonstrates the efficacy of using deep learning
techniques on the Malimg dataset for malware detection, several limitations exist. The
image-based analysis approach, although practical, can be computationally intensive,
requiring significant resources for training and inference, which may not be feasible in all
practical scenarios. The models trained in this study must also be evaluated for their
robustness against adversarial attacks, as deep learning models can be susceptible to such
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threats. Moreover, real-time deployment in production environments poses latency and
computational overhead challenges, which were not fully addressed in this research.

Future works. Future research can build upon the findings of this study by exploring
several avenues. Enhanced preprocessing techniques, such as image augmentation and
feature engineering, could be investigated to improve the robustness and accuracy of the
models. Additionally, combining image-based analysis with other data modalities, such
as network traffic or behavioral analysis, may provide a more comprehensive malware
detection framework.

Developing and optimizing models for real-time malware detection in production
environments would be a valuable extension of this work, involving the reduction of
computational overhead and latency associated with model inference. Furthermore,
exploring the impact of adversarial attacks on the proposed models and developing
techniques to enhance their robustness against such threats is crucial for practical
deployment. Lastly, examining the scalability of the proposed approach for large-scale
deployment in enterprise environments, including the integration with existing security
infrastructure and workflows, is another critical area for future research. Future research
can further advance the field of malware detection, contributing to more secure and
resilient computing environments.
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RESUME

Y. Imamverdiyev, E. Baghirov, 1.J. Chukwu
Image-based Deep Learning Method for Effective Malware Detection

The detection of malware using traditional methods is becoming increasingly
challenging due to the growing sophistication and complexity of malicious software. The
article proposes an innovative method for malware detection based on image analysis. This
approach converts malware binaries into grayscale images and applies advanced deep
learning techniques for their classification. A total of 13 pre-trained convolutional neural
network (CNN) architectures, including DenseNet201 and MobileNet, are utilized for
feature extraction and classification. The experiments were conducted on the Malimg
dataset, and the models were optimized through hyperparameter tuning.

The proposed method is notable for its efficiency and resilience, as it does not require
executing or disassembling malware samples, unlike traditional dynamic and static analysis
methods. The hierarchical structure of the approach ensures robust detection, where high-
level features of malware are extracted and analyzed for classification. DenseNet201 and
MobileNet demonstrate exceptional performance, achieving high accuracy, precision, recall,
and F1-scores across all metrics.

The method's core contribution is its ability to adaptively enhance malware detection
using image-based deep learning techniques, emphasizing safety and computational
efficiency. This approach has significant implications for modern cybersecurity, particularly
in addressing the challenges posed by sophisticated and evasive malware, thus providing a
novel solution for advanced threat detection and prevention.

PE3IOME

A. Umameepduesa, 3. bazupos, U.[x. Yykey
Memo0d anybokozao 0by4yeHuUss Ha OCHo8e u30bpaxkeHuli 05151 3¢hgheKMuUBHO20
obHapyxeHusi epedoHocHozo 10

OGHapy>keHre BpeAOHOCHOTO IPOrPAMMHOTO 0OECTICYEHHS C UCTIOIb30BaHUEM Tpa-
JTUIMOHHBIX METOJIOB CTAHOBHUTCS BCE Oojiee CIIOXKHOM 3amadell u3-3a pacTyuiei
U30ILPEHHOCTH U CI0XKHOCTU BpesoHocHoro [10. B cTatbe npeanaraeTcst ”HHOBALMOHHBIN
MeTo oOHapyxeHus: BpeoHocHoro I10, ocHOBaHHBIA Ha aHanu3e HW300pakeHUil. DTOT
noaxo A npeoodpazyer OuHapHbIe (aitsibl BpenoHocHoro 110 B m300pakeHUsT B OTTEHKAX
CEpOro U MPUMEHSET COBPEMEHHBIE METO/IbI IITyOOKOT0 00YUYeHHS 7151 MX KJIaCCU(PHUKALIUU.
Jlns w3BNeYeHUs TMPU3HAKOB M Kiaccu(UKAMKM HCMONb30BaHO 13 mpenoO0yueHHBIX
apXUTEKTYp cBepTOUYHBIX HeWpoHHBIX ceTeil (CNN), Bkiovyas DenseNet201 u MobileNet.
DKcrnepuMeHThl ObUTM MPOBEJEHBI Ha Habope AaHHbIX Malimg, a Mojenu ObUTM ONTUMHU-
3UpOBaHbI C IOMOIIIbIO HACTPONKU THIIEpIIapaMeTPOB.

[TpennoxeHHbIH MeTON OTIMYaeTca d(HPEKTUBHOCTHIO M YCTOMYUBOCTHIO, TaK Kak
He TpeOyeT BBINOJHEHMs WIM JAu3acceMONIMpoBaHus oOpasnoB BperoHocHoro I10, B
OTJIMYME OT TPAJAULIMOHHBIX METOJOB AUHAMMUYECKOTO U cTaTU4ecKkoro aHanuza. Mepapxu-
yeckasi CTpYKTypa MoAxo/1a o0ecreurnBaeT HajiexKHoe 0OHapyKeHUe, TPU KOTOPOM BBICOKO-
YpOBHEBbIE NMPU3HAKU BpenoHOCHOro [1O u3BIEKalOTCs M aHAIM3UPYIOTCA Ul KJIacCH-
¢ukamuu. DenseNet201 u MobileNet n1eMOHCTPUPYIOT HCKIIOUUTENBHYIO NPOU3BOIM-
TEJNBHOCTh, JOCTUTAsT BBICOKOH TOYHOCTH, TOJHOTHI, TOYHOCTH H Fl-meTpwk mo Bcem
MOKA3aTeIsIM.
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OcCHOBHOM BKJIaJl METOJIa 3aKJIFOYAETCSl B €r0 CIIOCOOHOCTH aJaNTUBHO YIy4YIlaTh
nporecc oOHapykeHHs BpeaoHocHoro I[IO ¢ ucmonb30BaHMEM METOJOB TIIyOOKOTO
0o0ydYeHHsT Ha OCHOBE W300paXKCHHIA, C aKIIEHTOM Ha 0E30MacHOCTh M BBIYUCIHUTEIHHYIO
3¢ pexTUBHOCTE. DTOT MOAXOA HMEET 3HAUUTENbHbIE IOCIEICTBUS JJIsI COBPEMEHHOMN
kuOepOe30nacHoCTH, OCOOEGHHO MPH PEIICHWU 3ajad, CBS3aHHBIX C HM30IIPEHHBIMU U
VKJIOHSIOIIAMUCS BPEJOHOCHBIMU TPOTPAMMAaMHM, IPEAOCTABISII HOBOE PEIICHHUE IS
nepeoBOro 0OHapy>KEHUS U MPEIOTBPAILICHHS YTPO3.
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