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PACMNO3HABAHVE MMEHOBAHHbIX CYLLHOCTEW
B TYFOMNABKMX BEICOKO3HTPOMUNHbLIX CMNJTABAX
C NCTOJIb3OBAHVEM MMYBNHHOIO OBYYEHWUA

To address the challenges posed by the rapid growth of literature in the field of refractory high-
entropy alloys (RHEASs) and the low efficiency of key information extraction, this paper proposes a
semi-automated information extraction workflow. The method leverages a large language model for
initial annotation, combined with manual review to construct a high-quality corpus. Based on this, a
BERT-BILSTM-CRF named entity recognition (NER) model is trained to automatically identify and
extract information related to materials, processing, structure, and properties. The final results show
that the NER model achieves an F1 score of 77% on the test set, significantly reducing manual
curation costs and providing support for the construction of materials knowledge bases and data-
driven research on new materials.
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B oTtBeT Ha ObICTpbIi pocT obbema nuTtepaTypbl B 00MacTu TyronnaBKMX BbICOKOSHTPOMUMHBLIX
cnnaeoB (RHEAS) 1 H13kyto 3 eKTMBHOCTb M3BMEYEHUS KIMIOYEBOW MHCpOPMALIUMM B @HHOW CTaTbe
npeanaraeTcs noflyaBToMaTnyYeckmin paboumin npouecc m3snedeHus nHcopmMaummn. Metog ncnonb3yet
OonbLLUYI0 A3bIKOBYIO MOAENb AN NepBOHAaYaribHOM pa3MeTKU B COMETAHMWN C PyYHOM MPOBEPKON Ans
NMOCTPOEHNST BbICOKOKAYECTBEHHOrO kopnyca. Ha aTon ocHoBe obyyeHa Mopenb pacrno3HaBaHUS
UMeHoBaHHbIX cylHocTen BERT-BILSTM-CRF gna aBToMaTudeckoro pacnosHaBaHUs U U3Bneve-
HUSA MHpopMaLMM 0 MaTepuanax, npoLeccax, CTPyKType u csormctBax. OKoHYaTenbHble pesynbTaThl
nokasbiBatoT, Yto Mmogenbe NER gocturna oueHkn F1 B 77% Ha TecToBOM Habope, YTO 3HaUNTENBHO
CHM3MMO 3aTpaTbl Ha Py4HY 00paboTKy 1 obecneumno NnoaaepXkKy Anst MOCTPoeHus 6asbl 3HaHUN
O MaTepuanax u uccrnegoBaHuii HOBbIX MaTepMarnoB Ha OCHOBE AaHHbIX.

Knio4yeBble croBa: TyronsaBkMe BbICOKOSHTPOMNUNHbIE CNiiaBbl, pacno3HaBaHme
WMEHOBAaHHBbIX CYLLHOCTEN, Bonbluasg s3bikoBast mogerns, BERT-BILSTM-CRF.
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Introduction

Refractory high-entropy alloys (RHEAS) are regarded as potential key materials in
fields such as aerospace and nuclear energy due to their exceptional performance under
extreme conditions [1]. Compared to traditional nickel-based superalloys, RHEAs exhibit
higher melting points, superior high-temperature stability, and outstanding corrosion and
oxidation resistance. With the rapid advancement of research, the number of related scien-
tific achievements and academic publications has grown exponentially. Since 2023 alone,
thousands of relevant research articles have been added to international databases such as
Web of Science and ScienceDirect.

However, a significant amount of critical information in these publications—such as
alloy compositions, processing conditions, microstructures, and performance parameters—
often exists in the form of unstructured text. Relying solely on manual reading and
organization is not only inefficient but also prone to omissions, which has become a bott-
leneck limiting knowledge utilization and data-driven research.

The rapid development of natural language processing (NLP) technologies has
provided new tools for knowledge extraction in materials science. Among these, named
entity recognition (NER), as a core task, can convert proper nouns and key parameters in
text into structured data, thereby supporting the construction of materials knowledge graphs
and databases [2-4]. Previous studies have shown that deep learning-based NER methods
(e.g., BILSTM-CRF, BERT) have achieved remarkable progress in general text processing,
and some domain-specific models (e.g., MatSciBERT, MatBERT) have also demonstrated
advantages in processing materials science corpora [5], [6]. Nevertheless, tailored research
for the specific system of RHEAs remains insufficient. The complexity of professional ter-
minology, ambiguous entity boundaries, and diverse expression forms make general models
difficult to apply directly, and there is a lack of efficient and systematic solutions.

At the same time, the emergence of large language models (LLM) has brought new op-
portunities for domain-specific text mining. LLM have demonstrated excellent performance in
zero-shot and few-shot learning, yet they still face challenges related to accuracy and control-
lability in specialized domain applications. Therefore, the academic community has gradually
begun to explore hybrid workflows that combine "LLM-assisted annotation, human review, and
deep learning training" to enhance result reliability while maintaining efficiency [7-9].

1. Against this background, this study proposes an intelligent information extraction

method for RHEAS. The innovations include:

2. Constructing an entity labeling system covering four dimensions: materials, pro-

cesssing, structure, and properties;

3. Designing an efficient annotation and modeling pipeline based on "LLM pre-

annotation, human review, and deep learning training";

4. Building a high-quality corpus based on over 200 RHEA-related publications and trai-

ning a BERT-BILSTM-CRF model to achieve automated extraction of key information.

The research outcomes provide a data foundation for the construction of a RHEA
knowledge base and the discovery of new materials.

Dataset Construction and Processing Methods

To construct a high-quality named entity recognition dataset tailored for the RHEAs
domain, this study proposes a semi-automated workflow comprising: (1) literature prepro-
cessing and candidate sentence construction; (2) entity annotation based on LLM followed
by manual verification; (3) data post-processing and format standardization; and (4) NER
model training and optimization.
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The research data were sourced from over 200 English-language publications on
RHEAs obtained from the Web of Science and ScienceDirect databases. The PDF files were
first converted to TXT format using pdfminer, and sentence segmentation was performed
based on SpaCy. Candidate sentences were then filtered using a predefined domain-specific
terminology database for RHEAS, which includes keywords such as alloy names, processing
techniques, and properties. Further cleaning operations involved removing noise such as
garbled characters, headers and footers, author and journal information, as well as
eliminating sentences with fewer than five words. Approximately 30,000 valid text units
were ultimately obtained, with each sentence assigned a unique identifier.
To address the knowledge extraction requirements of RHEA-related texts, a four-
category entity labeling system was designed, covering materials, processing, structure, and
properties. The specific definitions are as follows:
— MATERIALS: Includes alloys, composites, coatings, and elemental symbols, such as
TiZrHfNbAlo.s, AICoCrFeNi, Cr.0s, Co, and TiN thin film.

— PROCESSING: Encompasses preparation techniques, analytical methods, and related
parameter descriptions, such as arc-melting, annealing at 1200 °C for 24 h, sintering,
SEM, TEM, and EBSD.

—  STRUCTURE: Covers phase composition and microstructural characteristics, such as
BCC phase, Laves phase, dendritic structure, and grain boundary.

— PROPERTIES: Includes both qualitative and quantitative performance descriptions,
where numerical values must be accompanied by units—e.g., corrosion resistance,
350 HV, 1100 MPa, and 15% elongation.

During the annotation phase, a large language model (deepseek-r1-distill-llama-70b)
was employed for preliminary entity recognition. To ensure output quality, the prompts were
meticulously designed to clarify annotation rules for each entity category, supplemented
with positive and negative examples. The model-generated annotations were subsequently
reviewed and refined manually to form a high-confidence corpus. This process effectively
balanced efficiency and accuracy while significantly reducing manual effort. Specific anno-
tation guidelines included:

—  Material entities should be prioritized for annotation using full names or chemical formulas.

—  Processing entities should include both the technique and associated parameter

descriptions, while isolated numerical values were not annotated.

— Structure entities required complete and specific terminology, avoiding generic

terms appearing in isolation.

—  Property entities encompassed both qualitative and quantitative information, with

the latter mandatorily including units.

In the data post-processing stage, the annotated results were automatically converted
into start and end positions for each entity via scripting and standardized into the JSONL
format. These were then imported into Label Studio for manual visual inspection and
correction. Additionally, the data were transformed into the BIOES sequence labeling format
to meet subsequent model training requirements. Throughout the entire dataset construction
process, sentence identifiers were retained to ensure traceability and consistency.

An example of a single data entry is provided below:

{"data": {"text": "NbMoTaWV and TaNbHfZrTi RHEAs with bcc structures were created
for high-temperature applications, demonstrating great temperature strength and outstanding
phase stability at 1473 K."}, "annotations™: [{"result”: [{"type": "labels", "value™: {"start™:
35, "end": 48, "labels": ['STRUCTURE"]}}, {"type": "labels", "value": {"start": 118, "end":
138, "labels": ["PROPERTIES"]}}, {"type": "labels", "value": {"start": 155, "end": 170,
"labels": ["PROPERTIES"]}}, {"type": "labels™, "value": {"start": 174, "end": 180, "labels":
['PROCESSING"}}, {"type": "labels", "value"™: {"start": 0, "end": 8, "labels":
['MATERIALS"]}}, {"type™: "labels”, "value": {"start": 13, "end": 23, "labels":
["MATERIALS"1}}}}
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Experimental Design and Results

To ensure the effectiveness of model training, this study developed a preprocessing
pipeline for the JSONL data. The key challenge involved resolving the alignment issue
between subword tokenization and character-level annotations: the text and character offset
annotations were parsed and converted into BIOES tag sequences. Using the BERT
tokenizer’s offset mapping, a mapping was established to assign labels based on the first
character of each token. Sequences were uniformly truncated or padded to a length of 256,
converted into tensors, and then fed into the model.

For the model architecture, we adopted the well-established BERT-BILSTM-CRF as
the baseline NER model, leveraging pretrained semantic representations, bidirectional
sequence modeling, and label dependency constraints to achieve efficient entity recognition.
Training was conducted on approximately 17,000 annotated instances with the following
hyperparameters: BERT-base, batch size = 16, learning rate = 5e-5, and maximum sequence
length = 256. The training process showed stable convergence, and early stopping was
triggered at the 8th epoch. The model achieved a macro-average F1 score of 77% on an
independent test set. Detailed performance metrics for each category are presented in Table
1. The training and validation loss curves (Figure 2) decreased smoothly and stabilized,
indicating an effective training process without overfitting.

To further validate the practicality of the system, we selected two sentences from the
literature that were not included in the training data. Here we present one example: "The
V2.5sNbiMoo.sZr alloy after annealing at 1000 °C exhibited a predominant BCC phase and a
yield strength of 1250 MPa."

The system output was:

"The V2.sNbiMoo.sZr (MATERIALS) alloy after annealing at 1000 °C (PROCESSING)
exhibited a predominant BCC phase (STRUCTURE) and a yield strength of 1250 MPa
(PROPERTIES)."

The further extracted knowledge tuple was:

(MATERIALS, PROCESSING, STRUCTURE, PROPERTIES) = (V2.sNbiMoo.sZr,
annealing@1000 °C, BCC, 1250 MPa)

This example demonstrates that the system can effectively automatically extract key
information such as composition, processing, structure, and properties from complex
technical texts and preserve it in a structured form, showing potential for direct application
in knowledge base construction and scientific research analysis. The second test case is
provided in Figure 3 for reference.

Entity Precision | Recall |F1-score Taiing and Valdation Loss
MATERIALS | 089 | 0.87 | 0.88

PROCESSING | 073 | 072 | 0.72
STRUCTURE | 067 | 078 | 0.72

PROPERTIES | 0.69 0.63 | 0.66

Macro Avg 076 | 077 | 0.77 Simel

Weighted Avg 0.90 0.90 | 0.90
Table 1. Entity-level evaluation results Figure 2 — Training and validation loss curves
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=== Entity Recognition Result for Sentence 1 ===
Entity | Label
v2.5nb1mo@.5zralloy | MATERIALS
annealing | PROCESSING
1000°¢c | PROCESSING
beephase | STRUCTURE
1250mpa | PROPERTIES
original sentence: The v2.5Nb1Mo@.5Zr alloy after annealing at 100@°C exhibited a predominant BCC phase and a yield strength of 1256 MP
=== Entity Recognition Result for sentence 2 ===
Entity | Label
tiealavalloy | MATERIALS
heat-treated | PROCESSING
800°C | PROCESSING
958mpa | PROPERTIES
original sentence: The Ti6Al4v alloy was heat-treated at 8e@°C, resulting in a tensile strength of 950 MPa.
Figure 3 — Entity recognition results for two test sentences from RHEA literature

This study not only demonstrates the feasibility of semi-automated named entity
recognition in the RHEA domain, but also highlights broader implications for scientific text
mining and materials informatics. Compared with purely manual annotation, the proposed
workflow substantially reduces the effort required from domain experts while maintaining high
accuracy, thereby addressing the urgent need for efficient knowledge integration in rapidly
growing scientific literature. By combining carefully designed prompts for large language
models with rigorous human verification, the approach mitigates ambiguities associated with
complex expressions such as alloy compositions, parameterized processing conditions, and
microstructural descriptors. The resulting corpus of more than 17,000 annotated sentences is
among the most comprehensive resources currently available for refractory alloys and can serve
as a benchmark for future work in this field.

Equally important is the interdisciplinary nature of the workflow. Natural language
processing specialists provide methodological expertise in model design and optimization, while
materials scientists contribute domain knowledge to refine entity definitions and validate results.
This synergy ensures that extracted information is both technically accurate and contextually
meaningful for downstream applications, and exemplifies a practical model of human-Al
cooperation in data-intensive research.

The structured information derived from the workflow also holds potential for applications
beyond named entity recognition. It can serve as the foundation for constructing domain-specific
knowledge graphs, support hypothesis generation, and reveal hidden links between composition,
processing, structure, and properties. Furthermore, the integration of literature-derived knowledge
with experimental and computational databases may ultimately enable closed-loop materials design.
Thus, the contribution of this study extends beyond improving NER performance, offering a
generalizable framework to accelerate data-driven research and innovation in advanced materials.

Conclusion

This work proposes a semi-automated workflow for information extraction from refractory
high-entropy alloy literature, integrating large language models, human verification, and deep
learning. The resulting BERT-BILSTM-CRF model achieved an F1 score of 77%, confirming
the effectiveness of the approach. The study contributes a large, high-quality annotated corpus
and validates the feasibility of combining LLM-assisted annotation with domain expertise.
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Future research will focus on extending the method to nested entity and relation extraction,
constructing a comprehensive “‘composition—processing-structure—property” knowledge graph,
and integrating literature mining with performance prediction in an intelligent design platform
for advanced materials.
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RESUME

Hao, H.
Named Entity Recognition in Refractory High-Entropy Alloys Using Deep Learning

Background: Refractory high-entropy alloys (RHEAS) have attracted increasing
attention in aerospace and nuclear engineering due to their exceptional thermal stability and
mechanical performance. The rapid growth of publications in this field presents challenges
for systematically extracting critical knowledge, as information on alloy compositions,
processing routes, microstructures, and properties is often embedded in unstructured text.

Materials and methods: To address this challenge, a semi-automated workflow was deve-
loped. Large language models were employed for initial entity annotation, followed by expert
verification to ensure data quality. A domain-specific dataset was compiled from over 200 English-
language papers, covering four entity types: materials, processing, structures, and properties.
Subsequently, a BERT-BILSTM-CRF model was trained for named entity recognition (NER).

Results: The workflow produced approximately 17,000 annotated sentences. Evaluation
demonstrated that the trained model achieved an F1-score of 77% on the test set. The system
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effectively identified alloy names, processing parameters, structural characteristics, and perfor-
mance indicators, confirming its reliability for automatic knowledge extraction.

Conclusion: The proposed method substantially reduces manual annotation effort
while ensuring accurate extraction of domain-specific knowledge. It provides a solid
foundation for building materials knowledge bases and supports data-driven approaches for
the discovery of new alloys.

PE3IOME
Xao X.
PacrnosHasaHue umMeHo8aHHbIX CyLL{HOCmeU 8 myeoririaeKkux
GbICOKOSHmpOﬂUUHbIX crifiagax c ucriosib3oeaHuem 8ﬂy6UHH080 O6y‘leHUFI

Tyromnakue BeicokodHTponuitHbIe cruiaBbl (RHEAS) npuBnekaroT Bce 60bIIee BHU-
MaHH€ B a’POKOCMHUYECKOW W SACPHOM oOnacTsx Oyarogaps CBOEH HCKIIOYUTEIHHOU
TEPMHUYECKON CTAOMIBHOCTH M MEXaHWYECKUM XapaKTepUCTHKaM. BBICTphIi pocT myOmnu-
Kaluii B 3TON 00s1acTu co3iaeT npoOaeMbl sl CHCTEMAaTUYECKOTO U3BJICYCHHS KPUTHIECKHI
Ba)XHBIX 3HAHHM, TOCKOJBKY HH(OPMAITUSI O COCTaBe CIUIABOB, METOAAaX 00pabOTKH, MUKPO-
CTPYKTYyp€ U CBOWCTBAX 4acTO MpPe/ICTaBIeHa B HECTPYKTYPUPOBAHHOM TEKCTOBOM BHU/IE.

JIist perieHust 3Toit 3a1a4u ObUT pa3paboTaH MOTyaBTOMATH3UPOBAHHBINA PAObOUMiA TIpoIIec.
Bonbiime S3bIKOBBIE MOJEIM MCIONIB30BAINCH Ul MEPBOHAYAIBHOM PAa3METKHU CYIIHOCTEH C
TMIOCIIETYIOIIeH SKCIEePTHOM BepudHKalpei s o0ecrieueHns: kadecTBa JaHHbIX. Crieruann3u-
PpOBaHHBIN HAOOP AaHHBIX ObLT cocTaBiieH u3 Oosiee ueM 200 aHTJIOS3BIYHBIX CTATel U OXBATHII
YeThIpe TUIA CYLHOCTEN: MaTepualibl, 00paboTKa, CTPYKTYpHhI U CBOMCTBA. 3aTeM Oblia 0OyueHa
mozesib BERT-BILSTM-CRF a1t pacnio3HaBanst uMeHOBaHHbBIX cymHocTer (NER).

B pesynbrare pabothl mpouecca 0b110 pazMedeHo npubiauszurensHo 17 000 npensio-
xenuil. OlieHKa 1mokasana, 4to o0yueHHas mojenb nocruria Fl-nokazarens B 77% Ha Tec-
ToBOM Habope. Cuctema 3¢(HeKTUBHO UJIEHTUPHUIMPOBAIA Ha3BaHUs CIJIaBOB, TapaMETPhI
00pabOTKH, CTPYKTYpHBIE XapaKTEPUCTUKU U TOKA3aTeIN CBOMCTB, YTO MOJATBEPAUIIO €€
HAJEKHOCTb ISl aBTOMAaTUYECKOTO U3BJICUEHHS 3HAHUIA.

[IpennoxkeHHbI METOJI CYIIECTBEHHO COKpAalllaeT YCUJIUS O PYYHOU pa3MeTKe Ipu
o0ecreyeHn TOYHOTO M3BJICYEHMs JOMEHHO-crienuHUuHbIX 3HaHuil. OH obecreunBaeT
MIPOYHYIO OCHOBY JUIsl cO3JaHUsl 0a3 3HAHUI O MaTepuanax U MOJAJEPKUBAET MOJIXOMIbI,
OCHOBAHHBIC Ha JIAHHBIX, JIJI1 OTKPBITHS HOBBIX CIUIABOB.
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