N. Andrievskaya Federal State Budgetary Educational Institution of Higher Education "Donetsk National Technical University" , Donetsk
Research interests: ontological design, semantic technologies, intelligent management methods.
T. Martynenko Federal State Budgetary Educational Institution of Higher Education "Donetsk National Technical University" , Donetsk
Research interests: video information analysis, machine learning, modern optimization methods, intelligent management methods.
T. Vasyaeva Federal State Budgetary Educational Institution of Higher Education "Donetsk National Technical University" , Donetsk
Research interests: machine learning, neural network and evolutionary modeling, methods and systems of artificial intelligence.
UDC 004.048 DOI 10.34757/2413-7383.2023.31.4.005 Language: Russian Annotation:The article discusses the problem of planning the procurement of medicines in a pharmacy chain. When determining the optimal purchase price, there is a need to forecast prices using a historical array of price list data. Traditional statistical approaches to forecasting, as well as methods based on a neural network, are analyzed. Four methods are implemented: moving average method; random forest method; K-nearest neighbors’ method; neural network with LSTM architecture. Based on a number of metrics, the quality of the forecast of the tested methods was assessed. The experiments performed showed high prediction accuracy.
Keywords: neural network, LSTM, procurement, forecasting, forecast method, forecast accuracy.
References: 1. Svetlichnaya V.A. Ispol'zovanie metodov teorii prinyatiya reshenij dlya vybora optimal'noj strategii pri zakupke lekarstvennyh sredstv / V.A. Svetlichnaya, E.A. SHumaeva, O.V. CHengar', A.V. Andrievskaya // Ekonomika stroitel'stva i gorodskogo hozyajstva. 2020. – T. 16. № 1. – S. 41-48.
2. Zolotova I.YU. Kratkosrochnoe prognozirovanie cen na rossijskom optovom rynke elektroenergii na osnove nejronnyh setej / I.YU. Zolotova, V.V. // Problemy prognozirovaniya. 2017.
3. Andrievskaya, A.V. Ekstrapolyacionnye metody prognozirovaniya zakupochnyh cen lekarstv v usloviyah aptechnoj seti / A.V. Andrievskaya, V.O. Vovchenko, N.K. Andrievskaya // Informatika, upravlyayushchie sistemy, matematicheskoe i komp'yuternoe modelirovanie (IUSMKM-2021). Materialy XII Mezhdunarodnojnauchno-tekhnicheskoj konferencii v ramkah VII Mezhdunarodnogo Nauchnogo foruma Doneckoj Narodnoj Respubliki k 100-letiyu DonNTU. 2021, 169-175
4. Metod skol'zyashchej srednej v statistike [Elektronnyj resurs] – URL: https://www.goodstudents.ru/statistikazadachi/1144-metod-skolzyashej-srednej.html// (data obrashcheniya: 19.05.2023).
5. Feature selection for time-series prediction in case of undetermined estimation. Khmilovyi S., Skobtsov Yu., Vasyaeva T., Andrievskaya N.V sbornike: Biologically Inspired Cognitive Architectures (BICA) for Young Scientists. Proceedings of the First International Early Research Career Enhancement School (FIERCES 2016). Cham, 2016. S. 85-97
6. Hairova S.M. Metodika raboty s postavshchikami na osnove modelirovaniya raboty nejronnoj seti pri reshenii voprosov vybora postavshchikov uslug // Hairova S.M., Hairov B.G., SHimohin A.V. / FUNDAMENTAL'NYE ISSLEDOVANIYA № 7, 2020
7. Hajrutdinov M.R. Primenenie nejronnoj seti s obratnym rasprostraneniem i nejronnoj seti s skrytymi nejronami dlya prognozirovaniya potrebnosti v kriticheskih zapasnyh chastyah //Akademicheskaya publicistika. 2021. №3.
8. Bespalova S.V., Romanchuk S.M., Ermolenko T.V., Bondarenko V.I. Postroenie predskazatel'nyh modelej parametrov davleniya vody v vodoraspredelitel'nyh setyah s pomoshch'yu metodov mashinnogo obucheniya // Problemy iskusstvennogo intellekta. 2019. №2 (13).
9. Sazont'ev V. V. Prognozirovanie cen na uslugi i tovary s ispol'zovaniem nejronnyh setej/ Pod obshchej redakciej: Tihonov A. N., Azarov V. N., Aristova U. V., Karasev M. V., Kulagin V. P., Leohin YU. L., L'vov B. G., Titkova N. S.// Nauchno-tekhnicheskaya konferenciya studentov, aspirantov i molodyh specialistov NIU VSHE. Materialy konferencii/ M. : MIEM NIU VSHE, 2014. S. 84-85.
10. Zyus'ko K.D. Prognoz sprosa na tovar s pomoshch'yu nejronnyh setej v usloviyah menyayushchejsya razmernosti vhodnyh dannyh // Ekonomika i kachestvo sistem svyazi. 2020. №1
11. Ruban O. I. Ispol'zovanie tekhnologii nejrosetej v povsednevnosti [Tekst] / O.I. Ruban // Letnyaya shkola po iskusstvennomu intellektu 2019 / Kafedra sistemnyh issledovanij MFTI, Institut problem iskusstvennogo intellekta FIC IU RAN, Rossijskaya associaciya iskusstvennogo intellekta. – 4-7 iyulya 2019 g. – Rossiya, kampus MFTI.
12. Stupak, A. A. Upravlenie zapasami s ispol'zovaniem nejronnyh setej / A. A. Stupak // Upravlenie investiciyami i innovaciyami. – 2017. – № 3. – S. 95-103. – DOI 10.14529/iimj170312.
13. Butor, L. V. Primenenie iskusstvennyh nejronnyh setej dlya prognozirovaniya zakupok = Application of artificial neural networks for procurement forecasting / L. V. Butor // Inzhenernaya ekonomika [Elektronnyj resurs] : sbornik materialov mezhdunarodnoj nauchno-tekhnicheskoj konferencii professorsko-prepodavatel'skogo sostava v ramkah 20-j Mezhdunarodnoj nauchno-tekhnicheskoj konferencii «Nauka – obrazovaniyu, proizvodstvu, ekonomike», 26-28 aprelya 2022 / Belorusskij nacional'nyj tekhnicheskij universitet, Mashinostroitel'nyj fakul'tet ; redkol.: A. V. Plyasunkov, T. A. Sahnovich ; sost. A. V. Plyasunkov. – Minsk : BNTU, 2022. – S. 12-15.
14. Balavnev, D. A. Ispol'zovanie nejronnyh setej v zadache prognozirovaniya zakupok tovarov / D. A. Balavnev, M. L. Kindulov, B. R. Gorelov, T. O. SHergin. // Molodoj uchenyj. — 2020. — № 27 (317). — S. 30-32.
15. T. Vasyaeva, Stock Prices Dynamics Forecasting with Recurrent Neural Networks [Tekst] / T. Vasyaeva, T. Martynenko, S. Khmilovyi, N. Andrievskaya // Otkrytye semanticheskie tekhnologii proektirovaniya intellektual'nyh sistem. – 2020. – No 4. – P. 277-282.
16. Stock prices forecasting with LSTM networks. Vasyaeva T., Martynenko T., Khmilovyi S., Andrievskaya N. Communications in Computer and Information Science. 2019. T. 1093. S. 59-69.
17. Vozmozhnosti i nedostatki ispol'zovaniya skol'zyashchej srednej pri vyrabotke prognoznyh reshenij // Prioritetnye nauchnye napravleniya: ot teorii k praktike. 2015. №19.
18. Trufanova T.V. Sposoby prognozirovaniya kursa valyut na osnove modelej eksponencial'nogo sglazhivaniya i Hol'ta // T.V. Trufanova, K.D. Neshchemenko / Vestnik Amurskogo gosudarstvennogo universiteta. Seriya: Estestvennye i ekonomicheskie nauki. 2019. №87.
19. Mashinnoe obuchenie dlya nachinayushchih: algoritm sluchajnogo lesa (Random Forest) [Elektronnyj resurs] – URL: https://clck.ru/335YFV// (data obrashcheniya: 19.05.2023).
20. Metod blizhajshih sosedej (kNN) [Elektronnyj resurs] – URL: https://clck.ru/34YodU// (data obrashcheniya: 19.05.2023).
21. Tipy nejronnyh setej. Princip ih raboty i sfera primeneniya [Elektronnyj resurs] – URL: https://otus.ru/nest/post/1263 // (data obrashcheniya: 19.05.2023).
22. Pustynnyj YA.N. Reshenie problemy ischezayushchego gradienta s pomoshch'yu nejronnyh setej dolgoj kratkosrochnoj pamyati // Innovacii i investicii. 2020. №2.
23. Turunceva Marina YUr'evna Ocenka kachestva prognozov: prostejshie metody // Rossijskoe predprinimatel'stvo. 2011. №8-1.
24. Koefficient determinacii (Coefficient of determination) [Elektronnyj resurs] – URL: https://wiki.loginom.ru/articles/coefficient-of-determination.html // (data obrashcheniya: 19.05.2023).
25. Kinyakin V.N. Nekotorye predosterezheniya po proverke kachestva modeli regressii s pomoshch'yu koefficienta determinacii // V.N. Kinyakin, YU.S. Milevskaya / Vestnik Moskovskogo universiteta MVD Rossii. 2014. №8.
26. SHpargalka po raznovidnostyam nejronnyh setej. CHast' pervaya. Elementarnye konfiguracii [Elektronnyj resurs] – URL: https://tproger.ru/translations/neural-network-zoo-1 // (data obrashcheniya: 20.05.2023).
Issues: 4(31)'2023
Section: Math modeling
Cite:
Andrievskaya, N. APPLICATION OF STATISTICAL METHODS, CLUSTER ANALYSIS AND NEURAL NETWORK TECHNOLOGIES IN FORECASTING PROCUREMENT PRICES FOR MEDICINES // N. Andrievskaya, T. Martynenko, T. Vasyaeva // Проблемы искусственного интеллекта. - 2023. № 4 (31). - 41-55. - http://search.rads-doi.org/project/14374/object/210541 doi: 10.34757/2413-7383.2023.31.4.005