РУС ENG

CREATION OF A MIVAR EXPERT SYSTEM FOR IMPLEMENTING ETHICAL ASPECTS OF ARTIFICIAL INTELLIGENCE FOR CREDIT SCORING

About the magazine

News
Goals and sphere
Founder and publisher
Editorial Board
Licensing conditions
Confidentiality
Attitude towards plagiarism
Publication ethics
Archiving Policy
Subscription


For authors

Instructions for authors
The review process
Copyright
Agreement on the transfer of rights
Editorial fees


Archive

All issues
Search


Contacts

Contacts


Torzhkov Maxim Sergeevich
Master's Degree, Bauman Moscow State Technical University (BMSTU).
105005, 2nd Baumanskaya str., 5, bld. 1, Moscow, email makstorzhkov@yandex.ru.
Research interests: artificial intelligence, mivar technologies of logical artificial intelligence, information processing, cybernetics.

Koroleva Yulia Pavlovna
Master's Degree, Bauman Moscow State Technical University (BMSTU).
105005, 2nd Baumanskaya str., 5, bld. 1, Moscow, Russia, email yukorolyova1@yandex.ru.
Research interests: artificial intelligence, mivar technologies of logical artificial intelligence, information processing, cybernetics.

Baldin Alexander Viktorovich
Doctor of Technical Sciences, Professor; 1) Chief Researcher, JSC "Research Institute of Computing Complexes"; 2) Professor of the Department of Information Processing and Control Systems, BMSTU.
1) 117437, Profsoyuznaya str., 108, Moscow, email iu5baldin@bmstu.ru.
2) 105005, 2nd Baumanskaya str., 5, bld. 1, Moscow, email iu5baldin@bmstu.ru.
Research interests: artificial intelligence, databases, electronic university, expert systems, logic, mivar technologies of logical artificial intelligence, information processing, decision-making, pattern recognition, natural language understanding, cybernetics, autonomous robotic complexes.

Kotsenko Anton Alexandrovich
Postgraduate Student, Bauman Moscow State Technical University (BMSTU).
105005, 2nd Baumanskaya str., 5, bld. 1, Moscow, email randeren@mail.ru.
Research interests: artificial intelligence, mivar technologies of logical artificial intelligence, information processing, decision-making, pattern recognition, natural language understanding, cybernetics, autonomous robotic complexes.

Shen Qiujie
Postgraduate Student, Bauman Moscow State Technical University (BMSTU).
105005, 2nd Baumanskaya str., 5, bld. 1, Moscow, email shencr0929@gmail.com.
Research interests: artificial intelligence, mivar technologies of logical artificial intelligence, information processing, pattern recognition, cybernetics.

UDC 004.89 + 007.52
DOI 10.24412/2413-7383-2024-3-139-150
Language: Russian
Annotation: A mivar expert system (MES) for scoring a credit system with artificial intelligence (AI) has been created. Integrating ethical principles of AI into the process of designing and using scoring models will help make them fairer and more consistent with social values, and will also lead to an expansion of the bank's client base. The created MES assesses the borrower's creditworthiness based on the created rules, which allows increasing the sample of questionnaires for consideration, focusing on parameters that in turn are indicators of ethics and help make the system more transparent, honest and user-oriented. The created ethical mivar expert system increases customer confidence in financial institutions and promotes the development of responsible lending.
Keywords: mivar, mivar networks, mivar expert systems, ESS, Wi!Mi, Razumator, AI, Big Knowledge, relationships, scoring, lending, ethics.

List of literature:
1. Varlamov O. O. Evolutionary databases and knowledge bases for adaptive synthesis of intelligent systems. Mivar information space. Moscow: "Radio and communication", 2002. 286 p. EDN RWTCOP.
2. Varlamov O. O., Antonov P. D., Chibirova M. O., et al. MIVAR: a machine-implemented method for automated construction of a logical inference route in a knowledge base // Radio Industry. 2015. No. 3. Pp. 28-43. EDN: UQEPGD.
3. Vladimirov A. N., Varlamov O. O., Nosov A. V., Potapova T. S. Software package "UDAV": practical implementation of active learning logical inference with linear computational complexity based on a mivar rule network // Transactions of the Radio Research Institute. 2010. No. 1. Pp. 108-116. EDN: MKQGGT.
4. Varlamov O. O., Chibirova M. O., Sergushin G. S., Eliseev D. V. Practical implementation of the universal problem solver "UDAV" with linear complexity of logical inference based on the mivar approach and "cloud" technologies // Devices and systems. Management, control, diagnostics. 2013. No. 11. Pp. 45-55. EDN: SQKHXZ.
5. Varlamov O. O., Adamova L. E., Eliseev D. V. et al. Complex modeling of the processes of understanding the meaning of texts, speech and images by computers based on mivar technologies // Artificial Intelligence. 2013. No. 4. Pp. 15-27. EDN: TZWCPV.
6. Varlamov O. O., Maiboroda Yu. I., Sergushin G. S., Khadiev A. M. Application of mivar expert systems for solving text understanding and image recognition problems // In the world of scientific discoveries. 2015. No. 6 (66). P. 205-214. EDN: TVPWED.
7. Volkov A. S., Varlamov O. O. On the creation of a two-level neural network structure for use in mechanical engineering // In the collection: MIVAR'22. Moscow, 2022. P. 251-261. EDN: TXESUT.
8. Blokhina S. V., Adamova L. E., Kolupaeva E. G. et al. Development of educational programs with elements of artificial intelligence for training in the field of information security and personal data protection // Artificial Intelligence. 2009. No. 3. P. 328-335. EDN: TIFIGN.
9. Badalov A.Yu., Varlamov O.O., Sandu R.A., et al. Active mivar internet encyclopedia and development of mivar networks based on multidimensional binary matrices for simultaneous evolutionary processing of more than 10,000 rules in real time // Artificial Intelligence. 2010. No. 4. P. 549-557. EDN: UIMXAV.
10. Podkosova Ya.G., Varlamov O.O., Ostroukh A.V., Krasnyansky M.N. Analysis of prospects for using virtual reality technologies in distance learning // Issues of modern science and practice. Vernadsky University. 2011. No. 2 (33). P. 104-111. EDN: NUAKBP.
11. Kim H., Chuvikov D.A., Aladin D.V., et al. Creation of a knowledge base for a mivar expert system for diagnosing diabetes mellitus // Medical equipment. 2020. No. 6 (324). P. 38-41. EDN: EDXBGK.
12. Beloussov E.A., Popov I.A., Evdokimov A.A., et al. A recommender system for diagnosing diabetes mellitus based on the mivar inference mechanism // Natural and technical sciences. 2021. No. 7 (158). P. 169-174. EDN: JSFUSI.
13. Chestnova E.A., Fedoseeva E.Yu., Vaganov D.D., et al. Development of a knowledge base of the MES for the selection of dosage forms for antibiotics and antimycotics / // Natural and technical sciences. 2023. No. 5(180). P. 29-33. DOI 10.25633/ETN.2023.05.01. EDN WOZCUJ.
14. Varlamov O. O. Information processing systems and interaction of groups of mobile robots based on mivar information space // Artificial Intelligence. 2004. No. 4. P. 695-700. EDN: TIFIQD.
15. Sergushin G. S., Varlamov O. O., Chibirova M. O. et al. Study of the possibilities of information modeling of complex process control systems based on mivar technologies // Automation and control in technical systems. 2013. No. 2 (4). P. 51-66. EDN: RDWXUT.
16. Varlamov O.O., Aladin D.V., Saraev D.V., et al. On the possibility of creating decision-making systems for autonomous robots based on mivar expert systems processing more than 1 million production rules/sec. // Bulletin of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences. 2017. No. 6-2 (80). P. 54-61. EDN: TIVUDN.
17. Varlamov O.O., Lazarev V.M., Chuvikov D.A., Jha P. On the prospects for creating autonomous intelligent robots based on mivar technologies // Radio Industry. 2016. No. 4. P. 96-105. EDN: UQEVLG.
18. Varlamov O.O. On one approach to the metrics of autonomy and intelligence of robotic complexes // Bulletin of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences. 2017. No. 6-2 (80). P. 43-53. EDN: YWNDPI.
19. Varlamov O. O. On the metrics of autonomy and intelligence of robotic complexes and cyber-physical systems // Radio Industry. 2018. No. 1. P. 74-86. EDN: YQYQPV.
20. Varlamov O. O., Aladin D. V. Successful application of mivar expert systems for MIPRA - solving problems of planning actions of robotic complexes in real time // Radio Industry. 2019. No. 3. P. 15-25. EDN: EVFEAK.
21. Trishchenkov A.V., Osipov V.G., Lyalin E.S. et al. On the development in 2022 of machine learning AI for full product life cycle systems // Information and Education: communication boundaries. 2022. №14(22). С. 215-217. EDN UVWBGV.
22. Baibarin R.G., Kucherenko M.A., Tyulkina N.V., et al. Project “Mivar Active Encyclopedia” // Mivar'22: Collection of scientific articles. Moscow: Infra-M, 2022. С. 178-186. EDN LXNGTY.
23. Korneeva, A.P.; Chernenkiy, S.V.; Shkuratova, L.P. et al. MES for credit selection // Mivar'22: Collection of scientific articles. Moscow: Infra-M, 2022. С. 53-58. EDN CWVYJH.
24. Antsifrov, N.S.; Mukhanov, E.; Fedorov, I.N., et al. MES for selection of technique for public utilities // Mivar'23. Moscow: INFRA-M, 2023. С. 7-14. EDN WOPOEU.
25. Kotsenko, A.A. Development of a methodology for creating a mivar SPR for robot route planning in three-dimensional logical space // Information and Education: communication boundaries. 2023. № 15(23). С.301-304. DOI 10.59131/2411-9814_2023_15(23)_301. EDN GOBVAU.
26. Britvin N.S., Kozlov K.A., Aksenov D.A., et al. BZ MES of financial asset acquisition risk assessment // Mivar'23. Moscow: INFRA-M, 2023. С. 255-262. EDN NCULAG.
27. Abrosimova, N.G.; Arbuzov, A.P.; Savrasov, P.A., et al. MES for IT-company project management organization // Mivar'22. Moscow: Infra-M, 2022. С. 6-12. EDN NVJFUJ.
28. Yatsenko A.A. et al. On the application of MES to assess the impact of staff turnover on the efficiency of the enterprise//Information and Education:Borders of Communication.2022.No.14.P.195-198.EDN EMMVCU.
29. Solokhov, I.R.; Molchanov, A.V.; Grunin, N.S. et al. MES in logistic systems // Mivar'23: Collection of student articles. Moscow: INFRA-M, 2023. С. 192-200. EDN IIGKHH.
30. Zvonarev, A.E.; Lychagin, D.A.; Gudilin, D.S., et al. MES for DBMS selection // Mivar'23: Collection of student articles. Moscow: INFRA-M, 2023. С. 117-122. EDN EKHSPZ.
31. Denikaeva R. I., Albert V. A. Scoring in Russia and abroad // Scientific Review. 2014.
32. Hicham Sadok, Mohammed El Hadi El Maknouzi, Fadi Sakka Artificial intelligence and bank credit analysis: A review // Cogent Economics & Finance. 2022
33. Nikanenkova V.V. Credit scoring as a tool for assessing the creditworthiness of borrowers // Vestnik of Adygeya State University. Series 5: Economics. 2012. С. 2-4.

Release: 4(35)'2024
Chapter: SYSTEM ANALYSIS, CONTROL AND INFORMATION PROCESSING, STATISTICS
How to quote: Torzhkov M. S. Koroleva Yu. P. Baldin A. V. Kotsenko A. A. Shen QiujieCREATION OF A MIVAR EXPERT SYSTEM FOR IMPLEMENTING ETHICAL ASPECTS OF ARTIFICIAL INTELLIGENCE FOR CREDIT SCORING [Text] / M. S. Torzhkov Yu. P. Koroleva A. V. Baldin A. A. Kotsenko Shen Qiujie // Problems of artificial intelligence. - 2024. № 4 (35). - P. 139-150. - http://paijournal.guiaidn.ru/ru/2024/4(35)-12.html