Ustenko Vladimir Yurievich Junior Researcher, Federal State Budget Scientific Institution "Institute of Artificial Intelligence Problems."
283048, Donetsk, Artyoma str., 118 b.
Research interests: computer vision, machine learning, neural networks.
Bondarenko Vitaliy Ivanovich Candidate of Technical Sciences, Associate Professor; Associate Professor of the Department of Computer Technologies, Faculty of Physics and Technology, DonSU; Senior Researcher, Laboratory of Intelligent Systems and Data Analysis, IAPI.
283001, Russian Federation, Donetsk People's Republic, Donetsk, Teatralny Ave., 13, email mail@vibondarenko.ru.
Research interests: mathematical modeling, transfer processes, deep learning, natural language processing, data mining. Number of scientific publications – more than 100.
UDC 004.8, 004.93 DOI 10.24412/2413-7383-2024-3-151-163 Language: Russian Annotation:
This work focuses on the development of software for data annotation in COCO (Common Objects in Context) and YOLO (You Only Look Once) formats for computer vision tasks. The creation of high-quality annotated datasets directly impacts the performance of machine learning models, making efficient data annotation software a crucial component of research and development in artificial intelligence. The study identifies key criteria for classifying annotation tools, analyzes the capabilities of modern data annotation tools, and develops the architecture and interaction module of the system. Keywords: annotation systems, software engineering, computer vision, image processing, metadata, machine learning, datasets.
List of literature: 1. Ronzhin A. L. Intellectualization and Robotization of Domestic Scientific Equipment for Interdisciplinary Research // Problems of Artificial Intelligence. 2023. №1 (28). URL: https://cyberleninka.ru/article/n/intellektualizatsiya-i-robotizatsiya-otechestvennogo-nauchnogo-oborudovaniya-dlya-mezhdistsiplinarnyh-issledovaniy (accessed: 28.11.2024).
2. Zuev V. M. Comparison of Object Detection Using Artificial Intelligence Versus Classical Methods [Text] / Zuev V. M. // Problems of Artificial Intelligence. – 2024. – №3(34). – pp. 4–10. – ISSN 2413-7383. – DOI: 10.24412/2413-7383-2024-3-30-35.
3. Pikalyov Ya. S. On Neural Architectures for Feature Extraction in Object Recognition Tasks on Low-Power Devices [Text] / Ya. S. Pikalyov, T. V. Ermolenco // Problems of Artificial Intelligence. – 2023. – №3(30). – pp. 44–54. – ISSN 2413-7383. – DOI: 10.34757/2413-7383.2023.30.3.004.
4. Pavlenko B. V. Intellectually Algorithmic Method for Sight Calibration [Text] / B. V. Pavlenko, V. I. Bondarenko // Problems of Artificial Intelligence. – 2024. – №3(34). – pp. 55–63. – ISSN 2413-7383. – DOI: 10.24412/2413-7383-2024-3-55-63.
5. Ali Deeb A. Image-Based Object Detection Approaches for Embedded Systems in Robot Navigation [Text] / A. Ali Deeb, F. Shahhoud // Russian Journal of Nonlinear Dynamics. – 2022. – №5(19). – pp. 787–802. – ISSN 2658-5324. – DOI: 10.20537/nd221218.
6. Krishnan S. R. Enhancing Video Anomaly Detection with Advanced UNET Technology and Cascading Sliding Window Technique / S. R. Krishnan, P. Amudha // Informatics and Automation of Intelligence. – 2024. – №23(6). – pp. 1899–1930. – ISSN 2713-3192. – DOI: 10.15622/ia.23.6.12.
7. Khakimov R. S. On the Development of a Data Annotation System for Computer Vision Tasks [Text] / R. S. Khakimov, O. L. Nizhnikova, M. V. Blizno // Problems of Artificial Intelligence. – 2024. – №3(34). – pp. 70–79. – ISSN 2413-7383. – DOI: 10.24412/2413-7383-2024-3-70-79.
8. Zuev V. M. Data Preparation for Neural Network Training in Mechanism Motion Control [Text] / V. M. Zuev, O. A. Butov, A. A. Nikitina, S. I. Ulanov // Materials of the Donetsk International Round Table "Artificial Intelligence: Theoretical Aspects and Practical Applications. AI – 2021". – Donetsk: GPII, 27.05.2021. – pp. 92–95.
9. Paringer R. A., Mukhin A. V., Ilyasova N. Yu., Demin N. S. Application of Neural Networks for Semantic Segmentation of Fundus Images // Computer Optics. – 2022. – vol. 46, no. 4, pp. 596–602.
10. Kanaeva I. A., Spitsyn V. G. Road Defect Segmentation Based on Neural Network Ensemble // Bulletin of Tomsk State University. Management, Computer Engineering, and Informatics. – 2024. – no. 68, pp. 75–85. DOI: 10.17223/19988605/68/8.
11. Belovodskiy V. N. On the Use of Neural Networks to Construct Attraction Regions of Periodic Modes in Nonlinear Dynamic Systems // Problems of Artificial Intelligence. – 2023. – №4(31). URL: https://cyberleninka.ru/article/n/ob-ispolzovanii-neyronnyh-setey-k-postroeniyu-oblastey-prityazheniya-periodicheskih-rezhimov-nelineynyh-dinamicheskih-sistem (accessed: 28.11.2024).
12. Zuev V. M., Ivanova S. B. Self-Location Estimation Based on Video Image Analysis // Problems of Artificial Intelligence. – 2024. – vol. 33, no. 2, pp. 21–28. DOI: 10.24412/2413-7383-2024-2-21-28.
13. Pham Quang Bang, Murashov P. M., Bogatikov V. N. Fuzzy Model for Diagnosing Technological Processes // Problems of Artificial Intelligence. – 2023. – №3(30). URL: https://cyberleninka.ru/article/n/nechetkaya-model-diagnostiki-tehnologicheskih-protsessov (accessed: 28.11.2024).
14. Khakimov R. S. Review of Advanced Augmentation Techniques for Image Data Sets [Text] / R. S. Khakimov, B. V. Pavlenko, Ya. S. Pikaliev // Donetsk Readings 2024: Education, Science, Innovation, Culture and Modern Challenges: Materials of the IX International Scientific Conference (Donetsk, October 15–17, 2024). – Vol. 2: Physical, Chemical, Technical, and Computer Sciences. Part 2 / Ed. by Prof. S. V. Bespalova. – Donetsk: DonSU Publishing, 2024. – 296 pp. – pp. 272–275. – ISSN 2664-7362 (Print); ISSN 2664-7370 (Online).
15. Dvornikov S. V., Vasileva D. V. Improving Anomaly Detection Accuracy in Images by Forming Feature Vectors in Wavelet Bases // Informatics and Automation. – 2024. – №6(23). pp. 1698–1729.
16. Soyfer V. A., Fursov V. A., Kharitonov S. I. Kalman Filtering for a Class of Images of Dynamic Objects // Informatics and Automation. – 2024. – №4(23). pp. 953–968.
17. Favorskaya M. N., Pakhirka A. I. Restoration of Ultra-High-Resolution Aerial Photographs Considering Semantic Features // Informatics and Automation. – 2024. – №4(23). pp. 1047–1076.
18. Verkhoturov A. L., Stepanov A. S., Illarionova L. V. Using Radar Data to Monitor the Condition of Agricultural Crops in the South of the Russian Far East // Informatics and Automation. – 2024. – №4(23). pp. 1221–1245.
19. Ronzhin A. L., Le Van Ngiya, Shuvalov N. Optimization of the Technological Map of Acceptable System-Technical Solutions for Aquaculture Video Analytics Tasks // Bulletin of SUSU. Series: Mathematics. Mechanics. Physics. – 2024. – №2. URL: https://cyberleninka.ru/article/n/optimizatsiya-tehnologicheskoy-karty-dopustimyh-sistemotehnicheskih-resheniy-zadachi-videoanalitiki-akvakultury (accessed: 28.11.2024).
20. Goncharenko V. A., Khomonenko A. D., Abu Hasan R. Compositional Approach to Simulation Modeling of Queueing Systems with Random Parameters // Informatics and Automation. – 2024. – №6(23). pp. 1577–1608.
Release: 4(35)'2024
Chapter: SYSTEM ANALYSIS, CONTROL AND INFORMATION PROCESSING, STATISTICS
How to quote:
Ustenko V.Y. Bondarenko V.I. SOFTWARE DEVELOPMENT DATA ANNOTATION FOR COMPUTER VISION TASKS: AN OBJECT-ORIENTED APPROACH BASED ON WINFORMS [Text]
/ V.Y. Ustenko V.I. Bondarenko
// Problems of artificial intelligence. - 2024. № 4 (35). - P. 151-163. - http://paijournal.guiaidn.ru/ru/2024/4(35)-13.html