Romanyuk Vladimir Ruslanovich postgraduate student, Junior Researcher at the Laboratory of Integrated Automation Systems
SPYIRAN, line 14, 39, St. Petersburg, Russia.
Research interests: machine learning, human condition detection, neural interfaces.
UDC 004.8 DOI 10.24412/2413-7383-123-133 Language: Russian Annotation:
Eye movements play an important role in human cognitive processes, making them a subject of interest across a wide range of scientific and applied fields. Traditional eye-tracking methods offer high accuracy but have limitations related to the use of cameras or their equivalents. This paper proposes principles for developing a system to detect eye movement activity based on data from mobile, portable electro- encephalograph (EEG), which allows overcome these limitations. The system design is based on machine learning methods such as Long Short-Term Memory (LSTM) networks and Convolutional Neural Networks (CNN). Key aspects of development include signal preprocessing, filtering, data normalization, and feature extraction. The proposed principles lay the foundation for developing eye movement detection systems applicable in natural environments. Keywords: EEG, eye movement activity, machine learning
References: 1. Valtakari, N., Hooge, I., Viktorsson, C., Nyström, P., Falck-Ytter, T. & Hessels, R. Eye tracking in human
interaction: Possibilities and limitations. // Behavior Research Methods — 2021 — vol. 53.
2. Glekler E.V., Kashevnik A.M., Shemyakina N.V., Nagornova ZH.V., Brak I.V., Stankevich A.S. Human State
Analysis Service: Brain Electrical Activity and Video Tracking // Journal Of Information Technologies And
Computing Systems — 2023 — vol. 3 — pp. 72-85.
3. Zirui Li, Xiaer Xiahou, Gaotong Chen, Shuolin Zhang, Qiming Li. EEG-based detection of adverse mental state
under multi-dimensional unsafe psychology for construction workers at height // Developments in the Built
Environment — 2024 — vol. 19 — p. 100513.
4. Jingyi Wang, Zhiqun Wang, Guiran Liu. Recording brain activity while listening to music using wearable EEG
devices combined with Bidirectional Long Short-Term Memory Networks // Alexandria Engineering Journal —
2024 — vol. 109 — pp. 1-10.
5. Romaniuk V.R., Kashevnik A.M. Intelligent Eye Gaze Localization Method Based on EEG Analysis Using
Wearable Headband // Informatics and Automation — 2024 — vol. 23 — pp. 521-541.
6. Penedo T., Rodrigues S., Gotardi G., Simieli L., Barela J., Polastri P., Barbieri F. Gaze behavior data in the vitrine
of human movement science: considerations on eye-tracking technique // Brazilian Journal Of Motor Behavior
— 2023 — vol. 17 — pp. 75-88.
7. Martinez-Marquez D., Pingali S., Panuwatwanich K., Stewart R., Mohamed S. Application of eye tracking
technology in aviation, maritime, and construction industries: A systematic review // Sensors (Basel) — 2021 —
vol. 21 — p. 4289.
8. Lin, C., Zhang, C., Xu, J., Liu, R., Leng, Y. & Fu, C. Neural Correlation of EEG and Eye Movement in Natural
Grasping Intention Estimation. // IEEE Transactions On Neural Systems And Rehabilitation Engineering —
2023 — vol. 31 — pp. 4329-4337.
9. Jia Y., Tyler C. Measurement of saccadic eye movements by electrooculography for simultaneous EEG
recording // Behavior Research Methods — 2019 — vol. 51.
10. Sun R., Cheng A., Chan C., Hsiao J., Privitera A., Gao J., Fong C., Ding R., Tang A. Tracking gaze position from
EEG: Exploring the possibility of an EEG-based virtual eye-tracker // Brain And Behavior — 2023 — vol. 13.
11. Müller J., Wendt D., Kollmeier B., Brand T. Comparing eye tracking with electrooculography for measuring
individual sentence comprehension duration // PLoS ONE — 2016 — vol. 11.
12. Kang J., Han X., Song J., Niu Z., Li X. The identification of children with autism spectrum disorder by SVM
approach on EEG and eye-tracking data // Comput. Biol. Med. — 2020 — vol. 120 — p. 103722.
13. Armengol-Urpi, A., Salazar-Gómez, A. & Sarma, S. Brainwave-Augmented Eye Tracker: High-Frequency
SSVEPs Improves Camera-Based Eye Tracking Accuracy. // International Conference On Intelligent User
Interfaces, Proceedings IUI — 2022 — №2 — pp. 258-276.
14. Ma J., Zhang Y., Cichocki A., Matsuno F. A novel EOG/EEG hybrid human-machine interface adopting eye movements
and ERPs: Application to robot control // IEEE Transactions On Biomedical Engineering —2015 —vol. 62.
15. Park S., Han C., Im C. Design of wearable EEG devices specialized for passive brain–computer interface
applications // Sensors (Switzerland) — 2020 — vol. 20.
16. Biasiucci A., Franceschiello B., Murray M. Electroencephalography // Current Biology — 2019 — vol. 29.
17. Klug M., Gramann K. Identifying key factors for improving ICA-based decomposition of EEG data in mobile
and stationary experiments // Eur. J. Neurosci. — 2021 — vol. 54 — pp. 8406-8420.
18. Seok D., Lee S., Kim M., Cho J., Kim C. Motion Artifact Removal Techniques for Wearable EEG and PPG
Sensor Systems // Frontiers In Electronics — 2021 — vol. 2.
19. Arnal P., Thorey V., Debellemaniere E., Ballard M., Bou Hernandez A., Guillot A., Jourde H., Harris M.,
Guillard M., Van Beers P., Chennaoui M., Sauvet F. The Dreem Headband compared to polysomnography for
electroencephalographic signal acquisition and sleep staging // Sleep — 2020 — vol. 43 — p. zsaa097.
20. Yu Z., Guo S. A low-cost, wireless, 4-channel EEG measurement system used in virtual reality environments //
HardwareX — 2024 — vol. 17.
21. Krigolson O., Williams C., Norton A., Hassall C., Colino F. Choosing MUSE: Validation of a low-cost, portable
EEG system for ERP research // Frontiers In Neuroscience — 2017 — vol. 11.
22. Ladouce, S., Pietzker, M., Manzey, D., & Dehais, F. (2024). Evaluation of a headphones-fitted EEG system for
the recording of auditory evoked potentials and mental workload assessment // Behavioural Brain Research —
2024 — vol. 460. — https://doi.org/10.1016/j.bbr.2023.114827
23. Gong S., Xing K., Cichocki A., Li J. Deep Learning in EEG: Advance of the Last Ten-Year Critical Period //
IEEE Transactions On Cognitive And Developmental Systems — 2022 — vol. 14.
24. Zhang G., Davoodnia V., Sepas-Moghaddam A., Zhang Y., Etemad A. Classification of hand movements from
EEG using a deep attention-based LSTM network // IEEE Sensors Journal — 2019 — vol. 20 — pp. 3113-3122.
25. Narayanan, A. Using EEG Data to Detect Eye Movement. // Journal Of Student Research — 2023 — vol. 12.
26. Iyer, A., Das, S., Teotia, R., Maheshwari, S. & Sharma, R. CNN and LSTM based ensemble learning for human
emotion recognition using EEG recordings. // Multimedia Tools And Applications — 2023 — vol. 82.
Release: 1(36)'2025
Chapter: METHODS AND SYSTEMS OF INFORMATION PROTECTION, INFORMATION SECURITY
How to quote:
V.R. Romaniuk. PRINCIPLES OF DEVELOPING A SYSTEM FOR DETERMINING EYE MOVEMENT ACTIVITY BASED ON DATA FROM A MOBILE PORTABLE ELECTROENCEPHALOGRAPH // Problems of artificial intelligence. 2025. №1.