Podoprigorova Natalia Sergeevna Master's Degree, Bauman Moscow State Technical University (BMSTU).
105005, 2nd Baumanskaya str., 5, bld. 1, Moscow, Russia, email n.podoprigorova@icloud.com.
Research interests: artificial intelligence, mivar technologies of logical artificial intelligence, information processing, cybernetics.
Kozyrev Sergey Alexandrovich1 Master's Degree, Bauman Moscow State Technical University (BMSTU).
105005, 2nd Baumanskaya str., 5, bld. 1, Moscow, Russia, email kozyyrevsa@student.bmstu.ru.
Research interests: artificial intelligence, mivar technologies of logical artificial intelligence, information processing, cybernetics.
Podoprigorova Svetlana Sergeevna1 Master's Degree, Bauman Moscow State Technical University (BMSTU).
105005, 2nd Baumanskaya str., 5, bld. 1, Moscow, Russia, s.podoprigorova@icloud.com.
Research interests: artificial intelligence, mivar technologies of logical artificial intelligence, information processing, cybernetics.
Baldin Alexander Viktorovich Doctor of Technical Sciences, Professor; 1) Chief Researcher, JSC "Research Institute of Computing Complexes"; 2) Professor of the Department of Information Processing and Control Systems, BMSTU, Moscow, Russia, email iu5baldin@bmstu.ru.
1) 105005, 2nd Baumanskaya str., 5, bld. 1, Moscow, email iu5baldin@bmstu.ru.
2) 117437, Profsoyuznaya str., 108, Moscow, email iu5baldin@bmstu.ru.
Research interests: artificial intelligence, databases, electronic university, expert systems, logic, mivar technologies of logical artificial intelligence, information processing, decision-making, pattern recognition, natural language understanding, cybernetics, autonomous robotic complexes.
Kotsenko Anton Alexandrovich Postgraduate Student, Bauman Moscow State Technical University (BMSTU).
105005, 2nd Baumanskaya str., 5, bld. 1, Moscow, Russia, email randeren@mail.ru.
Research interests: artificial intelligence, mivar technologies of logical artificial intelligence, information processing, decision-making, pattern recognition, natural language understanding, cybernetics, autonomous robotic complexes.
Gong Shengshuo Postgraduate Student, Bauman Moscow State Technical University (BMSTU).
105005, 2nd Baumanskaya str., 5, bld. 1, Moscow, Russia, email hiteyeb@163.com.
Research interests: artificial intelligence, mivar technologies of logical artificial intelligence.
UDC 004.89 + 007.52 DOI 10.24412/2413-7383-2024-3-126-138 Language: Russian Annotation:
In this paper, a mivar expert system (MES) was created to determine the optimal consensus algorithm in distributed registries for various user situations and their subject areas. A comparison of 23 algorithms was conducted consensus from 6 categories (graph-based, proof-based, weight-based, Byzantine voting-based, non-Byzantine voting-based, randomized). In the process of analyzing existing consensus algorithms, 15 significant selection criteria were identified, including such as scalability, decentralization, throughput ability, energy efficiency, etc. The Wi!Mi Razumator software package serves as the main tool for creating an MES, which allows choosing appropriate consensus algorithms based on user requests. The MES for choosing a consensus algorithm will be useful for distributed ledger developers when choosing the best algorithm from a variety of available options and taking into account the specifics of each subject area. Keywords: mivar, mivar networks, mivar expert systems, KESMI, Wi!Mi, artificial intelligence, distributed registries, consensus algorithms.
List of literature: 1. Varlamov O. O. Evolutionary databases and knowledge bases for adaptive synthesis of intelligent systems. Mivar information space. Moscow: "Radio and communication", 2002. 286 p. EDN RWTCOP.
2. Varlamov O. O., Antonov P. D., Chibirova M. O., et al. MIVAR: a machine-implemented method for automated construction of a logical inference route in a knowledge base // Radio Industry. 2015. No. 3. Pp. 28-43. EDN: UQEPGD.
3. Vladimirov A. N., Varlamov O. O., Nosov A. V., Potapova T. S. Software package "UDAV": practical implementation of active learning logical inference with linear computational complexity based on a mivar rule network // Transactions of the Radio Research Institute. 2010. No. 1. Pp. 108-116. EDN: MKQGGT.
4. Varlamov O. O., Chibirova M. O., Sergushin G. S., Eliseev D. V. Practical implementation of the universal problem solver "UDAV" with linear complexity of logical inference based on the mivar approach and "cloud" technologies // Devices and systems. Management, control, diagnostics. 2013. No. 11. Pp. 45-55. EDN: SQKHXZ.
5. Varlamov O. O., Adamova L. E., Eliseev D. V. et al. Complex modeling of the processes of understanding the meaning of texts, speech and images by computers based on mivar technologies // Artificial Intelligence. 2013. No. 4. Pp. 15-27. EDN: TZWCPV.
6. Varlamov O. O., Maiboroda Yu. I., Sergushin G. S., Khadiev A. M. Application of mivar expert systems for solving text understanding and image recognition problems // In the world of scientific discoveries. 2015. No. 6 (66). P. 205-214. EDN: TVPWED.
7. Volkov A. S., Varlamov O. O. On the creation of a two-level neural network structure for use in mechanical engineering // In the collection: MIVAR'22. Moscow, 2022. P. 251-261. EDN: TXESUT.
8. Blokhina S. V., Adamova L. E., Kolupaeva E. G. et al. Development of educational programs with elements of artificial intelligence for training in the field of information security and personal data protection // Artificial Intelligence. 2009. No. 3. P. 328-335. EDN: TIFIGN.
9. Badalov A.Yu., Varlamov O.O., Sandu R.A., et al. Active mivar internet encyclopedia and development of mivar networks based on multidimensional binary matrices for simultaneous evolutionary processing of more than 10,000 rules in real time // Artificial Intelligence. 2010. No. 4. P. 549-557. EDN: UIMXAV.
10. Podkosova Ya.G., Varlamov O.O., Ostroukh A.V., Krasnyansky M.N. Analysis of prospects for using virtual reality technologies in distance learning // Issues of modern science and practice. Vernadsky University. 2011. No. 2 (33). P. 104-111. EDN: NUAKBP.
11. Kim H., Chuvikov D.A., Aladin D.V., et al. Creation of a knowledge base for a mivar expert system for diagnosing diabetes mellitus // Medical equipment. 2020. No. 6 (324). P. 38-41. EDN: EDXBGK.
12. Beloussov E.A., Popov I.A., Evdokimov A.A., et al. A recommender system for diagnosing diabetes mellitus based on the mivar inference mechanism // Natural and technical sciences. 2021. No. 7 (158). P. 169-174. EDN: JSFUSI.
13. Chestnova E.A., Fedoseeva E.Yu., Vaganov D.D., et al. Development of a knowledge base of the MES for the selection of dosage forms for antibiotics and antimycotics / // Natural and technical sciences. 2023. No. 5(180). P. 29-33. DOI 10.25633/ETN.2023.05.01. EDN WOZCUJ.
14. Varlamov O. O. Information processing systems and interaction of groups of mobile robots based on mivar information space // Artificial Intelligence. 2004. No. 4. P. 695-700. EDN: TIFIQD.
15. Sergushin G. S., Varlamov O. O., Chibirova M. O. et al. Study of the possibilities of information modeling of complex process control systems based on mivar technologies // Automation and control in technical systems. 2013. No. 2 (4). P. 51-66. EDN: RDWXUT.
16. Varlamov O.O., Aladin D.V., Saraev D.V., et al. On the possibility of creating decision-making systems for autonomous robots based on mivar expert systems processing more than 1 million production rules/sec. // Bulletin of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences. 2017. No. 6-2 (80). P. 54-61. EDN: TIVUDN.
17. Varlamov O.O., Lazarev V.M., Chuvikov D.A., Jha P. On the prospects for creating autonomous intelligent robots based on mivar technologies // Radio Industry. 2016. No. 4. P. 96-105. EDN: UQEVLG.
18. Varlamov O.O. On one approach to the metrics of autonomy and intelligence of robotic complexes // Bulletin of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences. 2017. No. 6-2 (80). P. 43-53. EDN: YWNDPI.
19. Varlamov O. O. On the metrics of autonomy and intelligence of robotic complexes and cyber-physical systems // Radio Industry. 2018. No. 1. P. 74-86. EDN: YQYQPV.
20. Varlamov O. O., Aladin D. V. Successful application of mivar expert systems for MIPRA - solving problems of planning actions of robotic complexes in real time // Radio Industry. 2019. No. 3. P. 15-25. EDN: EVFEAK.
21. Alpeev, V.S.; Lee, M.V.; Savelyev, A.A., et al. On the application of multi-subject neural networks and mivar expert systems to create hybrid intelligent information systems // Information and Education: communication boundaries. 2022. № 14(22). С. 224-226. EDN SFJNWC.
22. Vasilchenko, D.D.; Martynova, P.V.; Balashov, A.M. et al. MES for decision making in video analytics // Mivar'23. Moscow: INFRA-M, 2023. С. 384-389. EDN HHXEAB.
23. Bessonova, K.S.; Nozdrova, V.S.; Popov, N.A., et al. BZ MES on the selection of creative hobbies // Mivar'23: Collection of student articles. Moscow: INFRA-M, 2023. С. 249-254. EDN LAIPCC.
24. Andreev A.A., Kotsenko A.A., Vorontsov N.A., et al. On the development of MES for searching routes of autonomous transportation marketplace // Information and Education: communication boundaries. 2023. № 15(23). С.316-319. DOI 10.59131/2411-9814_2023_15(23)_316. EDN YAMOFZ.
25. Baibarin R.G., Kucherenko M.A., Tyulkina N.V., et al. On the creation of an intellectual system “mivar active encyclopedia” // Natural and Technical Sciences. 2022. № 3(166). С. 148-155. EDN HDNGFL.
26. Perova, A.E.; Chivarzin, A.E.; Karpov, D.K. et al. MES of task selection in a system-trainer for hearing-impaired students // Mivar'23. Moscow: INFRA-M, 2023. С. 148-154. EDN FEJJHM.
27. Lisin A.A., Mikailov R.R., et al. MES for evaluating character squads in combat against bosses in the game project Genshin Impact 3.0// Mivar'23: Collection of articles. Moscow: Infra-M, 2023. С. 123-129. EDN UMRUME.
28. Chuvikov D.A., Adamova L.E., Bulatova I.G. et al. MES “metabolic syndrome” for the therapist and endocrinologist // Mivar'22. Moscow: Infra-M, 2022. С. 105-114. EDN UYRARA.
29. Trishchenkov A.V., Osipov V.G., Lyalin E.S., et al. 2022: development of machine-building AI for SPWC // Mivar'22: Collection of scientific articles. Moscow: Infra-M, 2022. С. 433-439. EDN REMJXP.
30. Abrosimova N.G., Arbuzov A.P., Savrasov P.A., et al. On the development of a mivar expert system for the organization of IT-company project management // Information and Education: communication boundaries. 2022. № 14(22). С. 153-156. EDN KADRSH.
31. Hussein Z., Salama M.A., El-Rahman S.A. Evolution of blockchain consensus algorithms: a review on the latest milestones of blockchain consensus algorithms. Cybersecurity 6, 30. 2023. https://doi.org/10.1186/s42400-023-00163-y.
32. Alkhodair А., Ahmad J., Saraju P. Mohanty and Elias Kougianos. Consensus Algorithms of Distributed Ledger Technology - A Comprehensive Analysis. ArXiv abs/2309.13498. 2023.
33. Aguilera M. K. Stumbling over Consensus Research: Misunderstandings and Issues. Replication. Lecture Notes in Computer Science. 2010. Vol. 5959. pp. 59–72. doi:10.1007/978-3-642-11294-2_4. ISBN 978-3-642-11293-5.
Release: 4(35)'2024
Chapter: SYSTEM ANALYSIS, CONTROL AND INFORMATION PROCESSING, STATISTICS
How to quote:
Podoprigorova N. S. Kozyrev S. A. Podoprigorova S. S. Baldin A. V. Kotsenko A. A. Gong Shenshuo DEVELOPMENT OF A MIVAR EXPERT SYSTEM FOR SELECTING A CONSENSUS ALGORITHM FOR DISTRIBUTED LISTS [Text]
/ N. S. Podoprigorova S. A. Kozyrev S. S. Podoprigorova A. V. Baldin A. A. Kotsenko Gong Shenshuo
// Problems of artificial intelligence. - 2024. № 4 (35). - P. 126-138. - http://paijournal.guiaidn.ru/ru/2024/4(35)-11.html