РУС ENG

OVERVIEW OF KEY TECHNOLOGIES OF ROBOTECHNICS

About the magazine

News
Goals and sphere
Founder and publisher
Editorial Board
Licensing conditions
Confidentiality
Attitude towards plagiarism
Publication ethics
Archiving Policy
Subscription


For authors

Instructions for authors
The review process
Copyright
Agreement on the transfer of rights
Editorial fees


Archive

All issues
Search


Contacts

Contacts


Okhotnikov Andrey Leonidovich
Deputy Head of Department – Head of Department, Information Technology Department, Strategic Development Department
JSC "Scientific Research and Design Institute of Informatization, Automation and Communication in Railway Transport" (JSC "NIIAS"), Moscow
Research interests: automatic train control systems, vision systems, high-precision positioning systems, cyber-physical systems.

Alexander Vladimirovich Zazhigalkin
Doctor of Economics, Rector
FGAOU DPO "Academy of Standardization, Metrology and Certification", Moscow
Research interests: innovative development of the transport industry, metrology systems, verification and calibration, artificial intelligence in education and technological processes.

UDC 001.895; 621.865.8, 629.066
DOI 10.24412/2413-7383-141-155
Language: Russian
Annotation: The article describes the applied technologies for the development of robots and robotics, including artificial intelligence. The current state of domestic robotics is assessed. Promising areas of work on robotisation of production processes in JSC ‘Russian Railways’ are listed. Modern algorithms and models of sensor data processing and requirements to convolutional neural networks (CNN) for vision systems are analysed. The directions of prospective research in the field of development of robotic systems and complexes in the railway sector are proposed.
Keywords: robotic complex, biomorphic robot, artificial intelligence, vision system, predictive analytics, convolutional neural networks.

Список литературы:
1. Xu, S.; Lu, Y.; Vogel-Hauser, B.; Wang, L. Industry 4.0 and Industry 5.0-Origin, concept and Perception. J. Manuf. Syst. 2021, 61, pp.530–535.
2. Nahavandi, S. Industry 5.0 A human-centric solution. Sustainability 2019, 11, 4371. doi:10.3390/su11164371.
3. Golomidov, A. R. New robotic technologies and their applications / A. R. Golomidov, A. B. Ostapenko // Technical and natural science research in Russia and abroad: from theory to practice: Collection of scientific articles. Krasnodar: Individual Entrepreneur Viktor Kabanov (izdatelstvo "Novatsiya"), 2024. P. 102-105.
4. Kudyukin, V. V. Robotisation as a necessary element of increasing the efficiency of the railway transportation process // Transport of the Russian Federation. - 2023. - № 1-2(104-105). - S. 13-16.
5. Keisang, K. Bader, T. Samikannu, R. Review of operation and maintenance methodologies for solar photovoltaic microgrids. Front. Energy Res. 2021, 9, 730230.
6. Abiodun, O.I., Jantan, A., Omolara, A.E., Dada, K.V., Mohamed, N.A., Arshad, H. State-of-the-art in artificial neural network applications: A survey. Heliyon. 2018 Nov 23; 4(11):e00938. doi: 10.1016/j.heliyon.2018.e00938.
7. Albawi, S. Mohammed, T. A., Al-Zawi, S. Understanding of a convolutional neural network. 2017 International Conference on Engineering and Technology (ICET), Antalya, Turkey, 2017, pp. 1-6, doi: 10.1109/ICEngTechnol.2017.8308186.
8. Hussain, M. Sustainable Machine Vision for Industry 4.0: A Comprehensive Review of Convolutional Neural Networks and Hardware Accelerators in Computer Vision. AI, 2024, 5, pp. 1324-1356. doi: 10.3390/ai5030064.
9. Girshick, R. Fast R-CNN. 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015, pp. 1440-1448, doi: 10.1109/ICCV.2015.169.
10.Ren, S. He, K. Girshick R. Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137-1149, 1 June 2017, doi: 10.1109/TPAMI.2016.2577031
11. Liu, W. Anguelov, D. Erhan, D. Szegedy, C. Reed, S. Fu, C.Y. Berg, A. SSD: Single Shot MultiBox Detector. 2016, 9905. pp. 21-37. doi:10.1007/978-3-319-46448-0_2.
12.Redmon, J. Divvala, S. Girshick R. Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 779-788, doi: 10.1109/CVPR.2016.91.
13. Dai, J. Li, Yi. He, K. Sun, J. R-FCN: Object Detection via Region-based Fully Convolutional Networks. In Proceedings of the Conference on Advances in Neural Information Processing Systems 29 (NIPS 2016), Barcelona, Spain, 5–10 December 2016; doi: 10.48550/arXiv.1605.06409.
14. He, K. Zhang, X. Ren, S. Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Uonference on Uomputer Uision and Uattern Uecognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. pp. 770-778, doi: 10.1109/CVPR.2016.90.
15. Szegedy, C. Ioffe, S. Vanhoucke, V. Alemi, A. (2016). Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. doi:10.48550/arXiv.1602.07261.
16. Li, C., Li, L., Jiang, H., Weng, K., Geng, Y., Li, L., Ke, Z., Li, Q., Cheng, M., Nie, W., Li, Y., Zhang, B., Liang, Y., Zhou, L., Xu, X., Chu, X., Wei, X., & Wei, X. YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications. 2022. ArXiv, abs/2209.02976.
17. Wang, C., Bochkovskiy, A., Liao, H.M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7464-7475.
18. Sohan, M. Sai Ram, T. Reddy, R. Venkata, C. A Review on YOLOv8 and Its Advancements. In Proceedings of the International Conference on Data Intelligence and Cognitive Informatics, Tirunelveli, India, 27–28 June 2023; pp. 529–545.
19. Wang, C.Y., Yeh, I.H., Mark Liao, H.Y. (2025). YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. Lecture Notes in Computer Science, vol 15089. Springer, Cham. Doi: 10.1007/978-3-031-72751-1_1
20. Wang, C.Y., Liao, H.Y.M., Wu, Y.H., Chen, P.Y., Hsieh, J.W., Yeh, I.H. CSPNet: A new backbone that can enhance learning capability of CNN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 390–391.
21. Wang, C.Y.; Liao, H.Y.M.; Yeh, I.H. Designing network design strategies through gradient path analysis. arXiv 2022, doi: 10.48550/arXiv.2211.04800.
22. Wang, A. Chen, H. Liu, L. Chen, K. Lin, Z. Han, J. Ding, G. YOLOv10: Real-Time End-to-End Object Detection. arXiv 2024, doi:10.48550/arXiv.2405.14458
23. Ultralytics. YOLOv10 Documentation: Model Variants. URL:/https://docs.ultralytics.com/models/yolov10/#model-variants (Date of Addressing 15.09.2024).
24.Jegham, N. Koh, C.Y. Abdelatti, M. Hendawi, A. Evaluating the Evolution of YOLO (You Only Look Once) Models: A Comprehensive Benchmark Study of YOLO11 and Its Predecessors. doi:10.48550/arXiv.2411.00201.
25. Mushtaq, F. Ramesh, K. Deshmukh, S. Ray, T. Parimi, C. Tandon, P. Jha, P.K. Nuts&bolts: YOLO-v5 and Image Processing Based Component Identification System. Eng. Appl. Artif. Intell. 2023, 118, 105665.
26. Zhuang, L. Qi, H. Wang, T. Zhang, Z. A Deep-Learning-Powered Near-Real-Time Detection of Railway Track Major Components: A Two-Stage Computer-Vision-Based Method. IEEE Internet Things J. 2022, 9, 18806–18816. doi:10.1109/JIOT.2022.3162295.
27. He, H. Automatic Assembly of Bolts and Nuts Based on Machine Vision Recognition. Journal of Physics: Conference Series. 2021, 2113, 012033. doi:10.1088/1742-6596/2113/1/012033.
28. Panigrahi, S.; Raju, U.S.N. DSM-IDM-YOLO: Depth-Wise Separable Module and Inception Depth-Wise Module Based YOLO for Pedestrian Detection. International Journal on Artificial Intelligence Tools. 32. doi:10.1142/S0218213023500112.
29. Ma, Y.; Chai, L.; Jin, L.; Yu, Y.; Yan, J. AVS-YOLO: Object Detection in Aerial Visual Scene. Int. J. Patt. Recogn. Artif. Intell. 2022, 36, 2250004. doi:10.1142/S0218001422500045
30. Ustenko, V. Yu. Development of a software complex of data annotation for computer vision tasks: objectoriented approach based on WINFORMS / V. Yu. Ustenko, V. I. Bondarenko // Problems of Artificial Intelligence. - 2024. - № 4(35). - С. 151-163. - DOI 10.24412/2413-7383-2024-4-151-163.
31.Chen, T.; Ding, Z.; Li, B. Elderly Fall Detection Based on Improved YOLOv5s Network. IEEE Access 2022, 10, 91273–91282.
32. Liu, S.; Wang, Y.; Yu, Q.; Liu, H.; Peng, Z. CEAM-YOLOv7: Improved YOLOv7 Based on Channel Expansion and Attention Mechanism for Driver Distraction Behavior Detection. IEEE Access 2022, 10, 129116–129124.
33. Wang, Y. Wang, H. Xin, Z. Efficient Detection Model of Steel Strip Surface Defects Based on YOLO-V7. IEEE Access 2022, 10, 133936–133944.
34.Cai, Y.; He, M.; Tao, Q.; Xia, J.; Zhong, F.; Zhou, H. Fast Rail Fastener Screw Detection for Vision-Based Fastener Screw Maintenance Robot Using Deep Learning. Appl. Sci. 2024, 14, 3716. https://doi.org/10.3390/app14093716
35.Bubeck, W. Frick, F. Verl, A. Hardware-Accelerated Data Processing of Capacitive Sensor Arrays for Industrial and Service Robotic Applications. In ISR Europe 2022; 54th Inter. Symp. on Robotics, Munich, Germany 2022, pp. 174–179.
36. Zuev, V. M. Comparison of object detection by means of artificial intelligence in comparison with classical methods / V. M. Zuev // Problems of Artificial Intelligence. 2024. № 3(34). С. 30-35. DOI 10.24412/2413-7383- 2024-3-30-35.

Release: 1(36)'2025
Chapter: ROBOTS, MECHATRONICS AND ROBOTIC SYSTEMS
How to quote: A. L. Okhotnikov, A.V. Zazhigalkin. OVERVIEW OF KEY TECHNOLOGIES OF ROBOTECHNICS // Problems of artificial intelligence. 2025. №1.