Okhotnikov Andrey Leonidovich Deputy Head of Department – Head of Department, Information Technology Department, Strategic Development Department
JSC "Scientific Research and Design Institute of Informatization, Automation and Communication in Railway Transport" (JSC "NIIAS"), Moscow
Research interests: automatic train control systems, vision systems, high-precision positioning systems, cyber-physical systems.
Alexander Vladimirovich Zazhigalkin Doctor of Economics, Rector
FGAOU DPO "Academy of Standardization, Metrology and Certification", Moscow
Research interests: innovative development of the transport industry, metrology systems, verification and calibration, artificial intelligence in education and technological processes.
UDC 001.895; 621.865.8, 629.066 DOI 10.24412/2413-7383-141-155 Language: Russian Annotation:
The article describes the applied technologies for the development of robots and robotics, including artificial intelligence. The current state of domestic robotics is assessed. Promising areas of work on robotisation of production processes in JSC ‘Russian Railways’ are listed. Modern algorithms and models of sensor data processing and requirements to convolutional neural networks (CNN) for vision systems are analysed. The directions of prospective research in the field of development of robotic systems and complexes in the railway sector are proposed.
Keywords: robotic complex, biomorphic robot, artificial intelligence, vision system, predictive analytics, convolutional neural networks.
Список литературы: 1. Xu, S.; Lu, Y.; Vogel-Hauser, B.; Wang, L. Industry 4.0 and Industry 5.0-Origin, concept and Perception.
J. Manuf. Syst. 2021, 61, pp.530–535.
2. Nahavandi, S. Industry 5.0 A human-centric solution. Sustainability 2019, 11, 4371.
doi:10.3390/su11164371.
3. Golomidov, A. R. New robotic technologies and their applications / A. R. Golomidov, A. B. Ostapenko //
Technical and natural science research in Russia and abroad: from theory to practice: Collection of scientific
articles. Krasnodar: Individual Entrepreneur Viktor Kabanov (izdatelstvo "Novatsiya"), 2024. P. 102-105.
4. Kudyukin, V. V. Robotisation as a necessary element of increasing the efficiency of the railway
transportation process // Transport of the Russian Federation. - 2023. - № 1-2(104-105). - S. 13-16.
5. Keisang, K. Bader, T. Samikannu, R. Review of operation and maintenance methodologies for solar
photovoltaic microgrids. Front. Energy Res. 2021, 9, 730230.
6. Abiodun, O.I., Jantan, A., Omolara, A.E., Dada, K.V., Mohamed, N.A., Arshad, H. State-of-the-art in
artificial neural network applications: A survey. Heliyon. 2018 Nov 23; 4(11):e00938. doi:
10.1016/j.heliyon.2018.e00938.
7. Albawi, S. Mohammed, T. A., Al-Zawi, S. Understanding of a convolutional neural network. 2017
International Conference on Engineering and Technology (ICET), Antalya, Turkey, 2017, pp. 1-6, doi:
10.1109/ICEngTechnol.2017.8308186.
8. Hussain, M. Sustainable Machine Vision for Industry 4.0: A Comprehensive Review of Convolutional
Neural Networks and Hardware Accelerators in Computer Vision. AI, 2024, 5, pp. 1324-1356. doi:
10.3390/ai5030064.
9. Girshick, R. Fast R-CNN. 2015 IEEE International Conference on Computer Vision (ICCV), Santiago,
Chile, 2015, pp. 1440-1448, doi: 10.1109/ICCV.2015.169.
10.Ren, S. He, K. Girshick R. Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks. In IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6,
pp. 1137-1149, 1 June 2017, doi: 10.1109/TPAMI.2016.2577031
11. Liu, W. Anguelov, D. Erhan, D. Szegedy, C. Reed, S. Fu, C.Y. Berg, A. SSD: Single Shot MultiBox
Detector. 2016, 9905. pp. 21-37. doi:10.1007/978-3-319-46448-0_2.
12.Redmon, J. Divvala, S. Girshick R. Farhadi, A. You Only Look Once: Unified, Real-Time Object
Detection, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV,
USA, 2016, pp. 779-788, doi: 10.1109/CVPR.2016.91.
13. Dai, J. Li, Yi. He, K. Sun, J. R-FCN: Object Detection via Region-based Fully Convolutional Networks. In
Proceedings of the Conference on Advances in Neural Information Processing Systems 29 (NIPS 2016),
Barcelona, Spain, 5–10 December 2016; doi: 10.48550/arXiv.1605.06409.
14. He, K. Zhang, X. Ren, S. Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE
Uonference on Uomputer Uision and Uattern Uecognition (CVPR), Las Vegas, NV, USA, 27–30 June
2016. pp. 770-778, doi: 10.1109/CVPR.2016.90.
15. Szegedy, C. Ioffe, S. Vanhoucke, V. Alemi, A. (2016). Inception-v4, Inception-ResNet and the Impact of
Residual Connections on Learning. doi:10.48550/arXiv.1602.07261.
16. Li, C., Li, L., Jiang, H., Weng, K., Geng, Y., Li, L., Ke, Z., Li, Q., Cheng, M., Nie, W., Li, Y., Zhang, B.,
Liang, Y., Zhou, L., Xu, X., Chu, X., Wei, X., & Wei, X. YOLOv6: A Single-Stage Object Detection
Framework for Industrial Applications. 2022. ArXiv, abs/2209.02976.
17. Wang, C., Bochkovskiy, A., Liao, H.M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art
for Real-Time Object Detectors. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 7464-7475.
18. Sohan, M. Sai Ram, T. Reddy, R. Venkata, C. A Review on YOLOv8 and Its Advancements. In
Proceedings of the International Conference on Data Intelligence and Cognitive Informatics, Tirunelveli,
India, 27–28 June 2023; pp. 529–545.
19. Wang, C.Y., Yeh, I.H., Mark Liao, H.Y. (2025). YOLOv9: Learning What You Want to Learn Using
Programmable Gradient Information. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T.,
Varol, G. (eds) Computer Vision – ECCV 2024. Lecture Notes in Computer Science, vol 15089. Springer,
Cham. Doi: 10.1007/978-3-031-72751-1_1
20. Wang, C.Y., Liao, H.Y.M., Wu, Y.H., Chen, P.Y., Hsieh, J.W., Yeh, I.H. CSPNet: A new backbone that
can enhance learning capability of CNN. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 390–391.
21. Wang, C.Y.; Liao, H.Y.M.; Yeh, I.H. Designing network design strategies through gradient path
analysis. arXiv 2022, doi: 10.48550/arXiv.2211.04800.
22. Wang, A. Chen, H. Liu, L. Chen, K. Lin, Z. Han, J. Ding, G. YOLOv10: Real-Time End-to-End Object
Detection. arXiv 2024, doi:10.48550/arXiv.2405.14458
23. Ultralytics. YOLOv10 Documentation: Model Variants.
URL:/https://docs.ultralytics.com/models/yolov10/#model-variants (Date of Addressing 15.09.2024).
24.Jegham, N. Koh, C.Y. Abdelatti, M. Hendawi, A. Evaluating the Evolution of YOLO (You Only Look
Once) Models: A Comprehensive Benchmark Study of YOLO11 and Its Predecessors.
doi:10.48550/arXiv.2411.00201.
25. Mushtaq, F. Ramesh, K. Deshmukh, S. Ray, T. Parimi, C. Tandon, P. Jha, P.K. Nuts&bolts: YOLO-v5 and
Image Processing Based Component Identification System. Eng. Appl. Artif. Intell. 2023, 118, 105665.
26. Zhuang, L. Qi, H. Wang, T. Zhang, Z. A Deep-Learning-Powered Near-Real-Time Detection of Railway
Track Major Components: A Two-Stage Computer-Vision-Based Method. IEEE Internet Things J. 2022,
9, 18806–18816. doi:10.1109/JIOT.2022.3162295.
27. He, H. Automatic Assembly of Bolts and Nuts Based on Machine Vision Recognition. Journal of Physics:
Conference Series. 2021, 2113, 012033. doi:10.1088/1742-6596/2113/1/012033.
28. Panigrahi, S.; Raju, U.S.N. DSM-IDM-YOLO: Depth-Wise Separable Module and Inception Depth-Wise
Module Based YOLO for Pedestrian Detection. International Journal on Artificial Intelligence Tools. 32.
doi:10.1142/S0218213023500112.
29. Ma, Y.; Chai, L.; Jin, L.; Yu, Y.; Yan, J. AVS-YOLO: Object Detection in Aerial Visual Scene. Int. J. Patt.
Recogn. Artif. Intell. 2022, 36, 2250004. doi:10.1142/S0218001422500045
30. Ustenko, V. Yu. Development of a software complex of data annotation for computer vision tasks: objectoriented approach based on WINFORMS / V. Yu. Ustenko, V. I. Bondarenko // Problems of Artificial
Intelligence. - 2024. - № 4(35). - С. 151-163. - DOI 10.24412/2413-7383-2024-4-151-163.
31.Chen, T.; Ding, Z.; Li, B. Elderly Fall Detection Based on Improved YOLOv5s Network. IEEE Access
2022, 10, 91273–91282.
32. Liu, S.; Wang, Y.; Yu, Q.; Liu, H.; Peng, Z. CEAM-YOLOv7: Improved YOLOv7 Based on Channel
Expansion and Attention Mechanism for Driver Distraction Behavior Detection. IEEE Access 2022, 10,
129116–129124.
33. Wang, Y. Wang, H. Xin, Z. Efficient Detection Model of Steel Strip Surface Defects Based on YOLO-V7.
IEEE Access 2022, 10, 133936–133944.
34.Cai, Y.; He, M.; Tao, Q.; Xia, J.; Zhong, F.; Zhou, H. Fast Rail Fastener Screw Detection for Vision-Based
Fastener Screw Maintenance Robot Using Deep Learning. Appl. Sci. 2024, 14, 3716.
https://doi.org/10.3390/app14093716
35.Bubeck, W. Frick, F. Verl, A. Hardware-Accelerated Data Processing of Capacitive Sensor Arrays for
Industrial and Service Robotic Applications. In ISR Europe 2022; 54th Inter. Symp. on Robotics, Munich,
Germany 2022, pp. 174–179.
36. Zuev, V. M. Comparison of object detection by means of artificial intelligence in comparison with classical
methods / V. M. Zuev // Problems of Artificial Intelligence. 2024. № 3(34). С. 30-35. DOI 10.24412/2413-7383-
2024-3-30-35.
Release: 1(36)'2025
Chapter: ROBOTS, MECHATRONICS AND ROBOTIC SYSTEMS
How to quote:
A. L. Okhotnikov, A.V. Zazhigalkin. OVERVIEW OF KEY TECHNOLOGIES OF ROBOTECHNICS // Problems of artificial intelligence. 2025. №1.