РУС ENG

IMAGE-BASED DEEP LEARNING METHOD FOR EFFECTIVE MALWARE DETECTION

О журнале

Новости
Цели и сфера
Основатель и издатель
Редакционная коллегия
Условия лицензирования
Конфиденциальность
Отношение к плагиату
Публикационная этика
Политика архивирования
Подписка


For authors

Instructions for authors
The review process
Copyright
Agreement on the transfer of rights
Editorial fees


Archive

All issues
Search


Contacts

Contacts


Yadigar Imamverdiyev
Associate professor,
Azerbaijan Technical University, H. Javid, 25, Baku, Azerbaijan.
Research interests: Information security, biometric technologies, e-government security, artificial intelligence in security, cryptographic systems, social network analysis, distributed computing, mathematical logic.

Elshan Baghirov
PhD Candidate,
Institute of Information Technology, Ministry of Science and Education of the Republic of Azerbaijan, B. Vahabzade, 9A, Baku, Azerbaijan.
Research interests: machine learning, cybersecurity, malware detection.

Ikechukwu John Chukwu
Researcher,
Kadir Has University, Istanbul, Türkiye, and Ss. Cyril and Methodius University in Skopje (UKIM), North Macedonia.
Research interests: deep learning, image-based analysis, software security.

UDC 519.71
DOI 10.24412/2413-7383-106-122
Language: English
Annotation: The article examines a method for malware detection based on the analysis of grayscale images. Thirteen advanced convolutional neural networks, including DenseNet201, MobileNet, and others, are utilized for analysis based on the Malimg dataset. Experiments were conducted, including training and hyperparameter tuning, to optimize the models' performance. It is shown that models such as DenseNet201 and MobileNet achieve high accuracy, precision, recall, and F1 scores. This approach enhances the malware detection process, ensuring high efficiency and resilience against traditional methods of bypassing security systems. The application area of this work includes modern cybersecurity systems, the development of new methods for malware analysis, and protection against cyberattacks.
Keywords: Malware detection, malware analysis, transfer learning, image-based detection, cybersecurity.

References:
1. Awan M.J., Masood O.A., Mohammed M.A., et al. Image-Based Malware Classification Using VGG19 Network and Spatial Convolutional Attention // Electronics. 2021 Vol. 10(19). Article ID 2444
2. Baghirov E. Malware detection based on opcode frequency // Journal of Problems of Information Technology. 2023 No. 1 P. 3–7.
3. Baghirov E. Evaluating the performance of different machine learning algorithms for Android malware detection // Proceedings of the 5th International Conference on Problems of Cybernetics and Informatics. 2023 August 28–30.
4. Yajamanam S., Selvin V.R.S., Di Troia F., et al. Deep Learning versus Gist Descriptors for Image-based Malware Classification // Proceedings of the 4th International Conference on Information Systems Security and Privacy - ForSE. SciTePress, 2018 P. 553–561. https://doi.org/10.5220/0006685805530561
5. Neurosci. Volume 2022 Article ID 7671967, 17 pages. Hindawi.
6. Kim J., Ban Y., Ko E., et al. MAPAS: A practical deep learning-based Android malware detection system // International Journal of Information Security. 2022 Vol. 21 P. 725–738.
7. Mimura M., Ito R. Applying NLP techniques to malware detection in a practical environment // International Journal of Information Security. 2022 Vol. 21 P. 279–291.
8. Khan I., Kwon Y.W. Multi-class Malware Detection via Deep Graph Convolutional Networks Using TF-IDF-Based Attributed Call Graphs // In: Kim H., Youn J. (eds). Inf. Secur. Appl. WISA 2023 Lecture Notes in Computer Science. Vol. 14402 Springer, 2023
9. Daoudi N., Samhi J., Kabore A.K., et al. DEXRAY: A Simple, yet Effective Deep Learning Approach to Android Malware Detection Based on Image Representation of Bytecode // MLHat 2021 Communications in Computer and Information Science. Vol. 1482 Springer, 2021
10. Zhao Z., Zhao D., Yang S., et al. Image-Based Malware Classification Method with the AlexNet Convolutional Neural Network Model // Security and Communication Networks. 2023 Article ID 6390023
11. Kumar S., Panda K. SDIF-CNN: Stacking deep image features using fine-tuned convolutional neural network models for real-world malware detection and classification // Applied Soft Computing. 2023 Vol.146 Article ID 110676 https://doi.org/10.1016/j.asoc.2023.110676
12. Pachhala N., Jothilakshmi S., Battula B.P., et al. Enhanced malware family classification via image-based analysis utilizing a balance-augmented VGG16 model // Traitement du Signal. 2023 Vol. 40(5). P. 2169–2178
13. Simonyan K., Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition // arXiv preprint arXiv:1409.1556. 2015
14. He K., Zhang X., Ren S., et al. Deep Residual Learning for Image Recognition // IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016 P. 770–778.
15. Hai T.H., Van Thieu V., Duong T.T., et al. A Proposed New Endpoint Detection and Response With Image-Based Malware Detection System // IEEE Access.2023 Vol.11 P. 122859–122875.
16. Sandler M., Howard A., Zhu M., et al. MobileNetV2: Inverted Residuals and Linear Bottlenecks // IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2018 P. 4510–4520.
17. Howard A.G., Zhu M., Chen B., et al. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications // arXiv preprint arXiv:1704.04861. 2017
18. Huang G., Liu Z., Van Der Maaten L., et al. Densely Connected Convolutional Networks // IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017 P. 4700–4708.
19. Chollet F. Xception: Deep Learning with Depthwise Separable Convolutions // IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017 P. 1251–1258.
20. Szegedy C., Vanhoucke V., Ioffe S., et al. Rethinking the Inception Architecture for Computer Vision // IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016 P. 2818–2826.
21. Tan M., Le Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks // International Conference on Machine Learning (ICML). 2019 P. 6105–6114.
22. Zoph B., Vasudevan V., Shlens J., et al. Learning Transferable Architectures for Scalable Image Recognition // IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2018 P. 8697–8710
23. Nataraj L., Karthikeyan S., Jacob G., et al. Malware images: Visualization and automatic classification // Proceedings of the 8th International Symposium on Visualization for Cyber Security. 2011 P. 1–7.
24. Ahmed I.T., Hammad B.T., Jamil N. A Comparative Performance Analysis of Malware Detection Algorithms Based on Various Texture Features and Classifiers // IEEE Access. 2024 Vol. 12 P. 11500–11519
25. Jabra M.B., Cheikhrouhou O., Atitallah N., et al. Malware Detection Using Deep Learning and CNN Models // Proceedings of the 2023 International Conference on Cyberworlds (CW). 2023 P. 432–439.
26. Hai T.H., Van Thieu V., Duong T.T., et al. A Proposed New Endpoint Detection and Response With Image-Based Malware Detection System // IEEE Access. 2023 Vol. 11P. 122859–122875.
27. Kim J., Paik J.Y., Cho E.S., et al. Attention-Based Cross-Modal CNN Using Non-Disassembled Files for Malware Classification // IEEE Access. 2023 Vol.11 P.22889–22903.
28. Habib F., Shirazi S.H., Aurangzeb K., et al. Deep Neural Networks for Enhanced Security: Detecting Metamorphic Malware inIoT Devices // IEEE Access. 2024 Vol. 12 P. 48570–48582.
29. Потреба, Е.Ю. Анализ Методов И Средств Предотвращения Утечек Конфиденциальных Данных // Е.Ю. Потреба, Н.Е. Губенко // Проблемы искусственного интеллекта. - 2023 № 3 (30).
30. Kharlamov, A. Semantic Text Analysis Using Artificial Neural Networks Based On Neural-Like Elements With Temporal Signal Summation // A. Kharlamov, E. Samaev, D. Kuznetsov и др. // Проблемы искусственного интеллекта. - 2023 № 3 (30).
31. Pikalyov, Ya.S. About Neural Architectures Of Feature Extraction For The Problem Of Object Recognition On Devices With Limited Computing Power // Ya.S. Pikalyov, T.V. Yermolenko // Проблемы искусственного интеллекта. - 2023 № 3 (30).

Release: 1(36)'2025
Chapter: METHODS AND SYSTEMS OF INFORMATION PROTECTION, INFORMATION SECURITY
How to quote: Y. Imamverdiyev, E. Baghirov, I.J. Chukwu. IMAGE-BASED DEEP LEARNING METHOD FOR EFFECTIVE MALWARE DETECTION // Problems of artificial intelligence. 2025. №1.