РУС ENG

HIERARCHICAL PLANNING OF ACTIONS OF A HETEROGENEOUS GROUP OF AUTONOMOUS MOBILE ROBOTS

About the magazine

News
Goals and sphere
Founder and publisher
Editorial Board
Licensing conditions
Confidentiality
Attitude towards plagiarism
Publication ethics
Archiving Policy
Subscription


For authors

Instructions for authors
The review process
Copyright
Agreement on the transfer of rights
Editorial fees


Archive

All issues
Search


Contacts

Contacts


Bychkov I. V.
Academician, Dr.Sci.Tech., Director of Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of the Russian Academy of Sciences (IDSTU SB RAS),
134 Lermontov St., Irkutsk, 664033, Russia, bychkov@icc.ru.
Research interests: complex information networks, distributed computing and technologies, artificial intelligence

Davydov A. V.
Researcher, Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of the Russian Academy of Sciences (IDSTU SB RAS), Laboratory of Information and Control Systems,
134 Lermontov St., Irkutsk, 664033, Russia, tel. +7(395) 245-3085, artem@icc.ru.
Research interests: mathematical logic, artificial intelligence, robotics

Kenzin M. Yu.
Researcher, Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of the Russian Academy of Sciences (IDSTU SB RAS), Laboratory of Information and Control Systems,
134 Lermontov St., Irkutsk, 664033, Russia, tel. +7(395) 245-3085, gorthauers@gmail.com.
Research interests: metaheuristic algorithms, simulation modeling, multi-agent systems

Nagul N. V.
Ph.D. (Physics and Mathematics), Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of the Russian Academy of Sciences (IDSTU SB RAS), Senior Researcher, Head of the Laboratory of Information and Control Systems,
134 Lermontov St., Irkutsk, 664033, Russia, tel. +7(395) 245-3085,sapling@icc.ru.
Research interests: systems analysis, control theory, discrete-event systems

UDC 519.71
DOI 10.24412/2413-7383-2024-2-4-20
Language: Russian
Annotation: The article presents the general features of a multi-level approach to mission planning for groups of autonomous mobile robots. The approach combines top-level planning based on evolutionary algorithms and a logical level based on the formalization of logical discrete-event systems in the original calculus of positively formed formulas. The area of application of the developed approach is control systems for technical systems, primarily robotic complexes.
Keywords: positively-constructed formula, automatic theorem proving, prover, discrete event system, work shift scheduling problem, evolutionary algorithms, heuristics.

List of literature:
1. Badreldin M, Hussein A and Khamis A. A comparative study between optimization and market-based approaches to multi-robot task allocation // Advances in Artificial Intelligence. 2013. 2013(256524).
2. Vidal T, Crainic TG, Gendreau M et al. Heuristics for multi-attribute vehicle routing problems: A survey and synthesis // European Journal of Operations Research. 2012. Vol 231. P. 1-21.
3. Gini M. Multi-robot allocation of tasks with temporal and ordering constraints // Proceedings of 31st AAAI Conference on Artificial Intelligence, AAAI 2017. 2017. P. 4863-4869.
4. Nunes E, Manner M, Mitiche H et al. A taxonomy for task allocation problems with temporal and ordering constraints // Robotics and Autonomous Systems Special Issue on New Research Frontiers for Intelligent Autonomous Systems. 2017. Vol. 90. P. 55-70.
5. Stephan J, Fink J, Kumar V et al. Concurrent control of mobility and communication in multirobot systems // IEEE Transactions on Robotics. 2017. Vol. 33(5). P. 1248-1254.
6. Varadharajan V, St-Onge D, Adams B et al. Swarm relays: distributed self-healing ground-and-air connectivity chains // IEEE Robotics and Automation Letters. 2020.
7. Kantaros Y, Guo M and Zavlanos M. Temporal logic task planning and intermittent connectivity control of mobile robot networks // IEEE Transactions on Automatic Control. 2019. Vol. 64(10). P. 4105-4120.
8. Asghari M and Mirzapour Al-e-hashem SMJ. Green vehicle routing problem: A state-of-the-art review // International Journal of Production Economics. 2021. Vol. 231: 107899.
9. Zou B, Xu X, Gong Y et al. Evaluating battery charging and swapping strategies in a robotic mobile fulfillment system // European Journal of Operation Research. 2018. Vol. 267(2). P. 733-753.
10. MahmoudZadeh S, Powers DMW, Sammut K et al. Hybrid motion planning task allocation model for AUV’s safe maneuvering in a realistic ocean environment // Journal of Intelligent & Robotic Systems. 2019. Vol. 94(1). P. 265–282.
11. Karpas, E.; Magazzeni, D. Automated planning for robotics. Annual Review of Control, Robotics, and Autonomous Systems 2020, 3, 417–439.
12. Zombori, Z.; Urban, J.; Brown, C.E. Prolog technology reinforcement learning prover. In Proceedings of the International Joint Conference on Automated Reasoning. Springer, 2020, pp. 489–507.
13. Schader, M.; Luke, S. Planner-Guided Robot Swarms. In Proceedings of the International Conference on Practical Applications of Agents and Multi-Agent Systems. Springer, 2020, pp. 224–237.
14. Vassilyev S.N. Machine Synthesis of Mathematical Theorems // The Journal of Logic programming. 1990. Vol. 9, No. 2-3, P. 235-266.
15.Васильев С.Н. Интеллектное управление динамическими системами / С.Н. Васильев, А.К. Жерлов, Е.А. Федунов, Б.Е. Федосов. – М.: Физико-математическая литература, 2000. – 352c.
16. Davydov A.V., Larionov A.A., Cherkashin E.A. On the calculus of positively constructed formulas for automated theorem proving // Automatic Control and Computer Sciences (AC\&CS). 2011. Vol. 45, No. 7, P. 402-407.
17.Cherkashin, E.A.; Postoenko, A.; Vassilyev, S.N.; Zherlov, A. New Logics for Intelligent Control. In Proceedings of the Proceedings of the Twelfth International Florida Artificial Intelligence Research Society Conference, May 1-5, 1999, Orlando, Florida, USA; Kumar, A.N.; Russell, I., Eds. AAAI Press, 1999, pp. 257–261.
18. Vassilyev S., Galyaev A. Logical-optimization approach to pursuit problems for a group of targets. Dokl. Math. 2017, 95.
19. Vassilyev S., Ponomarev G. Automation methods for logical derivation and their application in the control of dynamic and intelligent systems. Proc. Steklov Inst. Math. 2012, 276, 161–179.pas, E.; Magazzeni, D. Automated planning for robotics. Annual Review of Control, Robotics, and Autonomous Systems 2020, 3, 417–439.
20. Schacht-Rodríguez R, Ponsart J.-C., García-Beltrán C.D. and Astorga-Zaragoza C.M. Prognosis & Health Management for the prediction of UAV flight endurance // IFAC-PapersOnLine. 2018. Vol. 51(24). P. 983–990.
21. Van den Bergh J, Beliën J, De Bruecker P et al. Personnel scheduling: A literature review // European Journal of Operational Research. 2013. Vol. 226(3). P. 367-385.
22.Rocha M. The staff scheduling problem: a general model and applications // Master thesis: Faculdade de Engenharia da Universidade do Porto. 2013.
23.Chan P, Weil G. Cyclical Staff Scheduling Using Constraint Logic Programming // Lecture Notes in Computer Science. 2000. Vol. 2079. P. 159–175.
24. Amjad MK, Butt SI, Kousar R et al. Recent research trends in genetic algorithm based flexible job shop scheduling problems // Mathematical Problems in Engineering. 2018. Vol. 2018(5). P. 1-32.
25. Vidal T, Crainic TG, Gendreau M et al. A hybrid genetic algorithm for multidepot and periodic vehicle routing problems // Operations Research. 2012 Vol. 60(3). P. 611-624.
26. Laporte G, Ropke S, Vidal T. Chapter 4: Heuristics for the Vehicle Routing Problem // Vehicle Routing. 2014. P. 87–116.
27. Nagata Y, Bräysy O, Dullaert W. A penalty-based edge assembly memetic algorithm for the vehicle routing problem with time windows // Computers & Operations Research. 2010. Vol. 37(4). P. 724–737.
28. Semanco P and Modrak V. A comparison of constructive heuristics with the objective of minimizing makespan in the flow-shop scheduling problem // Acta Polytechnica Hungarica. 2012. Vol. 9. P. 177-190.
29. Laporte G. The art and science of designing rotating schedules // European Journal of Operational Research. 1999. Vol. 50. P. 1011-1017.
30.Cassandras C.G., Lafortune S. Introduction to Discrete Event Systems. Springer Cham, 2021.
31.Davydov A. V. On the application of the calculus of positively constructed formulas for the study of controlled discrete-event systems / A. V. Davydov, A. A. Larionov, N. V. Nagul // Model. Anal. Inform. Sist. 2024. № 1, V. 31. P. 54 –77.

Release: 2(33)'2024
Chapter: INTELLIGENT ROBOTIC SYSTEMS
How to quote: Bychkov I. V. HIERARCHICAL PLANNING OF ACTIONS OF A HETEROGENEOUS GROUP OF AUTONOMOUS MOBILE ROBOTS [Text] / I. V. Bychkov A. V. Davydov M. Yu. Kenzin N. V. Nagul // Problems of artificial intelligence. - 2024. № 2 (33). - P. 4-20. - http://paijournal.guiaidn.ru/ru/2024/2(33)-1.html